DETERMINING OUR ESSENTIALS - 8th grade MATH

8.EE.C Analyze and solve linear equations, inequalities, and pairs of simultaneous linear equations.	8.EE.C. 7	Fluently solve linear equations and inequalities in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solution. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $\mathrm{x}=\mathrm{a}, \mathrm{a}=\mathrm{a}$, or $\mathrm{a}=\mathrm{b}$ results (where a and b are different numbers). b. Solve linear equations and inequalities with rational number coefficients, including solutions that require expanding expressions using the distributive property and collecting like terms.	I can give examples of linear equations in one variable with one solution, infinitely many solutions, or no solution.simpler forms, until an equivalent equation of the form $\mathrm{x}=\mathrm{a}, \mathrm{a}=\mathrm{a}$, or $\mathrm{a}=$ b results (where a and b are different numbers).	Linear equations, inequalities, solutions, inverse operations, properties of equality, properties of inequality, distributive property, factors, terms, like terms, coefficients, constants				Unit 3

	8.EE.C. 8	Analyze and solve pairs of simultaneous linear equations. a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations including cases of no solution and infinite number of solutions. Solve simple cases by inspection. c. Solve mathematical problems and problems in real-world context leading to two linear equations in two variables.						Unit 6
	Func	ns (F)						
8.F.A Define, evaluate, and compare functions.	$\text { 8.F.A. } 1$	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in Grade 8.)						Unit 5
	8.F.A. 2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	I can compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).		Unit 4 Quiz, Linear Vs. Non-Linear matching SB activity.			Unit 5

	$\text { 8.G.A. } 2$	Understand that a twodimensional figure is congruent to another if one can be obtained from the other by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that demonstrates congruence.	I understand that a two-dimensional figure is congruent to another if one can be obtained from the other by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that demonstrates congruence.					Unit 9
	8.G.A. 3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	I can describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	Unit 1 IM				Unit 8
-	8.G.A. 4	Understand that a twodimensional figure is similar to another if, and only if, one can be obtained from the other by a sequence of rotations, reflections, translations, and dilations; given two similar twodimensional figures, describe a sequence that demonstrates similarity.	I understand that a two-dimensional figure is similar to another if, and only if, one can be obtained from the other by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that demonstrates similarity.					Unit 9
	8.G.A.	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.						Unit 9 Unit 11
8.G.B Understand and	8.G.B. 6	Understand the Pythagorean Theorem and its converse.						Unit 7
apply the Pythagorean Theorem.	8.G.B. 7	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world context and mathematical problems in two and three dimensions.	I can apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld context and mathematical problems in two and three dimensions.					Unit 7
	8.G.B. 8	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.						Unit 7

