NEW MILFORD PUBLIC SCHOOLS

New Milford, Connecticut

Grade 6 Mathematics

October/2022

New Milford Board of Education

Wendy Faulenbach, Chairperson

Pete Helmus, Vice Chairperson

Olga I. Rella, Secretary

Tammy McInerney, Assistant Secretary

Eric Hansell

Brian McCauley

Tom O'Brien

Leslie Sarich

Keith A. Swanhall, Jr.

Interim Superintendent of Schools

Dr. JeanAnn C. Paddyfote

Assistant Superintendent

Ms. Holly Hollander

Authors of Course Guide

Scott Mason

Gavriela Ziu-Pires

New Milford's Mission Statement

The mission of the New Milford Public Schools, a collaborative partnership of students, educators, family and community, is to prepare each and every student to compete and excel in an ever-changing world, embrace challenges with vigor, respect and appreciate the worth of every human being, and contribute to society by providing effective instruction and dynamic curriculum, offering a wide range of valuable experiences, and inspiring students to pursue their dreams and aspirations.

Math 6

Grade 6

In Grade 6, students focus on critical areas that build on grade 5 work and develop critical foundational knowledge for grade 7 and 8 work with ratios and proportional relationships, algebraic expression and equations, functions and the coordinate plane.

During the first critical area, students further expand their prior understanding of the meaning of multiplication and division of whole numbers and decimals, as well as apply the relationship between multiplication and division in order to explain why the procedure for dividing fractions works. Students use visual models to divide whole numbers by fractions and fractions by fractions to solve word problems. Furthermore, students extend their knowledge of numbers to the system of rational numbers which includes negative numbers. The focus for the grade is on the order and absolute value of rational numbers and location of the points in all four quadrants of the coordinate plane.

The second critical area of study, during sixth grade, focuses on writing, interpreting and using expressions and equations. Students understand and develop vocabulary necessary for writing expressions and equations that correspond to unique situations, use and evaluate expressions to solve problems and apply the properties of operations to rewrite equivalent expressions. Once students have a chance to study and solve problems involving ratios and rates, they further develop and connect relationships between two quantities in terms of independent and dependent variables using real-world problems. They solve problems using tables, equations and graphs.

The next area for students in sixth grade is to build on their prior knowledge of the area by reasoning about relationships among shapes using hand-on models. Students compose and decompose shapes from more familiar ones to determine the area, surface area and volume of 3 dimensional figures, as well as solve real world problems.

Last, students have the opportunity to develop their ability to think statistically. Learners explore populations, learn about variables associated with populations and use measures of center such as (average, mode and median) to describe data sets. Students conclude their studies by displaying numerical data in plots on a number line, including dot plots, histograms and box plots and performing a statistical investigation to include the collection, organization and analysis of the data in order to capture the learning.

Pacing Guide

Unit Title	# of Weeks
Unit 1: Compute Fluently with Positive Multi Digit Numbers	5
Unit 2: Positive and Negative Numbers in the Real World	3
Unit 3: Understand and Model the Division with Fractions	4
Unit 4: Ratios and Rates	4
Unit 5: Expressions, Equations and Inequalities	4
Unit 6: Proportional Relationships and Algebraic Reasoning	6
Unit 7: Applications of Geometry	4
Unit 8: Statistics and Distributions	5

UNIT 1 - COMPUTE FLUENTLY WITH POSITIVE MULTI-DIGIT NUMBERS

Stage 1 Desired Results			
ESTABLISHED GOALS	Tro	ansfer	
CCSS.MATH.CONTENT.NS.B.4: Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express 36 + 8 as 4(9+2). CCSS.MATH.CONTENT.NS.B.2: Fluently divide multi-digit numbers using the standard algorithm. CCSS.MATH.CONTENT.NS.B.3: Fluently add, subtract, multiply and divide multi-digit decimals using the standard algorithm for each operation.	 Students will be able to independently use their learning standardized systems. UNDERSTANDINGS Students will understand that Whole numbers can be broken down into partial numbers and vice versa A factor is a whole number that divides without a remainder into another number A multiple is a whole number that is a product of the whole number and any other factor Every integer greater than 1 is either a prime number or can be written as a product of its prime factors Multiplication is used to find the greatest common factor and least common multiple of two whole numbers Division is the inverse of multiplication Numbers can be represented in different formats and have the same value Place value and operations of whole numbers operations help to perform multi digit arithmetic using standard algorithms 	 to attend to the precision of different quantities using eaning ESSENTIAL QUESTIONS Students will keep considering 1. When is it best to use the Greatest Common Factor versus the Least Common Multiple to solve real world problems? 2. What are the properties in mathematics and how do they assist in performing various operations? 3. How does place value and operations with whole numbers help to perform operations with multi digit decimals? 	
	 Compatible numbers are used to estimate the reasonableness of answers 		
	Acq	uisition	
	Students will know algorithm base common factor common multiple decompose digit distributive property	 Students will be skilled at Using estimates to check the reasonableness of exact computations Calculating GCF of two whole numbers less than equal to 100 and the LCM of two whole numbers less than equal to 12 Determining and apply the use of GCF or LCM to solve real world problems 	

 dividend divisor estimate expanded form expanents factor factor pair factored form factorization fraction greatest common factor inverse operation least common multiple multiple multiplicative identity property of 1 multiplicative inverse operation order of operations partial quotient strategy place value power power of 10 prime factorization proper factors quotient remainder repeating decimal standard algorithm terminating decimal 	 Communicating using precise vocabulary how the distributive property makes use of factors and multiples Writing exponential notation for repeated factors Estimating sums, differences, products and quotients of whole number multi digit numbers and multi digit decimals before performing operations Using compatibles numbers to estimate the reasonableness of answers Using the partial product and partial quotient strategies to develop fluency with the traditional, standard algorithm for division of multi digit whole numbers Using visual models to represent, add and subtract multi digit decimals Using knowledge of whole number division to divide multi digit decimals Interpreting remainders in real-world context
---	---

Stage 2 – Evidence			
Code	Evaluative Criteria	Assessment Evidence	
T, M, A	Rubric Criteria:	PERFORMANCE TASK(S):	
	Mathematical Concepts:	Goal: Use a real life scenario to identify what information is needed to figure out	
	4 - Explanation shows complete understanding of	how much are the coins in the video worth.	
	mathematical concepts.	Role: Calculating the final total of the transaction	
	3 - Explanation shows substantial understanding of	Audience: Classmates	
	mathematical concepts.	Products: Using a problem solving framework, evidence and transfer knowledge	
	2 - Explanation shows some understanding of	to calculate the total dollar amount of the transaction based on the count of the	
	mathematical concepts.	Coinstar transaction reciept	
	1 - Explanation shows very limited understanding of	Standards for Success: scoring rubric including focus on explanation, process	
	mathematical concepts OR is not written.	and accuracy of the solution	
	Strategy/Procedures:	Differentiation: For more advanced students you can challenge them to use	
	4 - Uses an efficient and effective strategy to solve the	estimation in doubling or tripling the quantities. Consider students of language	
	problem(s).	learners and accommodations by providing coin values with images, as well as a	
	3 - Uses an effective strategy to solve the problem(s).	calculator, place value charts or graphic organizer to assist with the algorithms	
	2 - Sometimes uses an effective strategy to solve the	and organization	
	problem(s), but does not do it consistently.		
	1 - Rarely uses an effective strategy to solve the		
	problem(s).		
	Mathematical Errors:		
	4 - 90-100% of the steps and solutions have no		
	mathematical errors.		
	3 - Almost all (85-89%) of the steps and solutions have		
	no mathematical errors.		
	2 - Most (75-84%) of the steps and solutions have no		
	mathematical errors.		
	1 - More than 75% of the steps and solutions have		
	mathematical errors.		
	Completion:		
	4 - All problems are completed.		
	3 - 75% of all problems are completed.		
	2 - 50% of all problems are completed.		
	1 - 25% or less of problems are completed.		
	Neatness and Organization:		
	4 - The work is presented in a heat, clear, organized		
	Tashion that is easy to read.		

	3 - The work is presented in a neat and organized	
	tashion that is usually easy to read.	
	2 - The work is presented in an organized fashion but	
	may be hard to read at times.	
	1 - The work appears sloppy and unorganized. It is	
	hard to know what information goes together	
		OTHER EVIDENCE:
T, M, A		Embedded Assessment 1: Estimation, GCF and LCM
T, M, A		Embedded Assessment 2: Operation of multi digit whole numbers and decimals
		through problem solving
Т, М, А		Common Unit Test: Compute fluently with Positive Multidigit Numbers
M, A		Skill Check: Daily Warm-ups and/or Exit Tickets
IVI, A		Prompt: What is important to understand when division leads to a quotient with
Т. М. А		a remainder in a word problem?
.,,,,,,,		Homework: Almost daily

Stage 3 – Learning Plan		
Code	Pre-Assessme	nt
M	Init Pre-Assessment	
M	 Teacher monitors for prerequisite understanding(s) and misconcenti 	on(s) though warm up questions
M	 Summary of Key Learning Events and Instruction Students will work independently to complete pre-assessment of prior knowledge involving numerical estimation, place value of whole numbers and decimal; teacher will plan and facilitate learning to clarify any prior misconception foundational to the new learning. 	Progress Monitoring • Warm ups • Classwork • IXL • Homework • Exit Tickets
Т, А	 Teacher will engage students by presenting an activity, to help students explore, discuss and apply the place value system. 	Embedded AssessmentsMid-Unit Assessment
Τ, Α	• Teacher will engage students by presenting a warm up, such as a 3 Act Task, to help students explore, discuss and apply the estimation strategy as a tool in a variety of situations including checking answers and making decisions, as well as develop strategies for estimating results of arithmetic operations.	
Т, А	 Teacher will engage students by presenting scenarios to help explore, discuss and continue to develop when addition, subtraction, multiplication, or division is the appropriate 	

	operation to solve a problem.	
А	• Teacher will engage students by presenting scenarios to help	
	explore, discuss and continue to develop ways to model sums,	
	differences, products, and quotients with areas, fraction strips,	
	and number lines.	
А	 Assess studnets's knowledge and application and review 	
	misconceptions as needed.	
Т, А	 Teacher will present a lesson or task with contetx that engages 	
	students in exploring the greatest common factor of two whole	
	numbers less than or equal to 100 and list the factors accordingly.	
А	 Teacher will present a lesson or task with context that examines 	
	the process of prime factorization and to find the GCF by	
	multiplying common prime factors and integrating the distributive	
	property using sums and its use in adding numbers 1-100 with a	
	common factor. Example: 16 + 24 = 4 (4+6)	
Μ	 Students will engage in opportunities to analyze whole numbers 	
	and describe them using lesson vocabulary such as greatest	
	common factor.	
Т, А	 Teacher will present a lesson or task with context that engages 	
	students to develop strategies for finding the least common	
	multiple of two numbers; students recognize and practice that	
	LCM can be found by listing all multiples of two numbers and	
	finding the least of common multiples.	
Т, М, А	 Teacher will continue to engage students and facilitate problem 	
	solving situations where students can apply their knowledge; the	
	teacher ensures that students have opportunities to talk with the	
	teacher and with other students to make sense of what they are	
	learning about GCF and LCM using precise vocabulary. Note: It is	
	important to direct students in understanding and applying how	
	GCF not only helps solve problems but also assists in simplifying	
	fractions and producing equivalent fractions, as well as students	
	recognizing that the greatest common factor represents the	
	greatest number of equal-sized groups he can make.	
Т, А	• Teacher will present a lesson or task to engage students in	
	recognizing the fact that every whole number can be written in	
	exactly one way as a product of prime numbers; Use exponential	
	notation with appropriate vocabulary to write repeated factors.	
A	 Assess students' knowledge and application and review 	
	misconceptions.	

Μ	 Students will work independently to complete pre-assessment of 	
	prior knowledge involving understating place value, read and	
	write decimals in standard and expanded form, use models and	
	reasonableness to add, subtract and multiply decimals to the	
	hundreths, division of a up to 4 digit number dividend and a two	
	digit divisor, divide decimals to hundredths in context; teacher will	
	plan and facilitate learning to clarify any prior misconception	
	foundational to the new learning.	
T, M, A	• Teacher will prompt students to look for a connection between	
	adding/subtracting, and multiplication/division; follow with	
	introduction of the concept of inverse operations.	
T, M, A	• Teacher will introduce and engage the students in a problem	
	solving situation to focus on the meaning of division such as, "Lara	
	wants to purchase a new laptop for \$192. She earns \$16 an hour	
	for babysitting. How many hours will she need to work in order to	
	have enough money for her new purchase?; teacher during this	
	session can assess different strategies of division and explore with	
	students the similarities between the different strategies, such as	
	partial quotients and standard algorithms.	
T, M, A	 Students practice solving problems and understand the 	
	connection between partial quotient, area models and the	
	standard algorithm by comparing solutions side by side. Note: the	
	goal is not fluency with larger numbers but rather accuracy and	
	understanding of place value as students divide, as well as the	
	meaning of the quotient.	
Т, А	 Students apply learning to solve word problems and use mental 	
	math to estimate quotients by using compatible numbers while	
	reasoning about the answers using accurate vocabulary terms.	
M, A	 Teachers will provide cyclical opportunities over time to allow for 	
	fluency over time by including real world scenarios and mental	
	math by estimation.	
А	 Teachers will develop a lesson to engage students in estimating 	
	and modeling the sum, difference, product and quotient from	
	problems prior to performing the algorithms.	
Т, А	 Students will continue to develop their skill in estimating 	
	operations with multi digit decimals by rounding up numbers to	
	the nearest whole number and reasoning about the answers to	
	the problems.	
Т, А	 Teachers will introduce and engage students to the idea that place 	

	value is critical in adding and subtracting multi digit decimals;	
	students understand that aligning multi digit decimals by place	
	value can make it easier to add and subtract.	
M <i>,</i> A	Teachers will introduce scenarios to engage students by applying	
	prior knowledge multiplying and dividing by powers of 10 to allow	
	students to build fluency operating with multi digit decimals.	
Т, А	 Teachers will introduce scenarios to engage students in 	
	recognizing that you can rewrite a problem with decimal divisors	
	as an equivalent problem with a whole number divisor.	
T, M, A	• Teacher will introduce and model strategies for dividing with multi	
	digit whole numbers and decimals in context and allow for a	
	cyclical practice for mastery throughout the year.	
А	 Assess knowledge and application though the unit CFA and review 	
	misconceptions as needed.	
А	 Review assessment and allow for opportunities to view common 	
	mistakes and misconceptions	
Т	 Performance Task: Students use a real life scenario to identify 	
	what information is needed to figure out how much are the coins	
	in the video worth.	

UNIT 2 - POSITIVE AND NEGATIVE NUMBERS IN THE REAL WORLD

	Stage 1 Desired Results			
ESTABLISHED GOALS	Tro	ansfer		
CCSS.MATH.CONTENT.NS.C.5:				
Understand that positive and negative	Students will be able to independently use their learning	to attend to the meaning of quantities and relate the		
numbers are used together to describe	concept of positive and negative numbers to real-world a	application.		
quantities having opposite directions or	Meaning			
values (e.g., temperature above/below	UNDERSTANDINGS	ESSENTIAL QUESTIONS		
zero, elevation above/below sea level,	Students will understand that	Students will keep considering		
credits/debits, positive/negative electric	Positive and negative numbers describe	1. When comparing numbers, how do you know		
charge), use positive and negative	quantities that have opposite values or	which one is greater?		
real-world contexts, explaining the	direction	2 How are positive and negative numbers used to		
meaning of Ω in each situation	 Opposite numbers as having the same 	2. Now are positive and negative numbers used to		
CCSS.MATH.CONTENT.NS.C.6:	 Opposite numbers as having the same dictance from 0 in the enposite directions 	concents?		
Understand a rational number as a point	In addition to whole numbers and desimals	2 How is a number line similar to an absolute value		
on the number line. Extend number line	 In addition to whole numbers and decimals, the surplus provides includes integers which 	3. How is a number line similar to an absolute value		
diagrams and coordinate axes familiar	the number system includes integers which	and now are they different?		
from previous grades to represent	can be represented on the number line	4. How do you know whether you should add or		
points on the line and in the plane with	 Positive and negative numbers can be 	subtract the distances of each point from the axis		
negative number coordinates.	compared and ordered on the number line	when finding the distance between two points?		
CCSS.MATH.CONTENT.NS.C.7:	 Absolute value as a distance from 0 on the 			
Understand ordering and absolute value	number line			
of rational numbers.	 Absolute values can be interpreted in real 			
CCSS.MATH.CONTENT.NS.C.8:	world scenarios and compared			
solve real-world and mathematical	 Ordered pairs can be plotted on the four 			
quadrants of the coordinate plane	quadrants of the coordinate plane			
Include use of coordinates and absolute	• The axes of the coordinate plane can be			
value to find distances between points	extended in the opposite (negative) direction			
with the same first coordinate or the	to represent negative numbers			
same second coordinate.	 The signs of numbers in ordered pairs 			
CCSS.MATH.CONTENT.G.A.3:	represent a singular location on the			
Draw polygons in the coordinate plane	coordinate plane			
given coordinates for the vertices; use	 When two ordered nairs differ only in the 			
coordinates to find the length of a side	signs of their coordinates, the points are			
joining points with the same first	reflections of each other across one or both			
coordinate or the same second	the even			
coordiante. Apply these techniques in	uie axes			
the context of solving real world and	 Real world problems can be solved by 			
mamematical problems.	graphing pais in the coordinate system			
	 A line segment from one coordinate pair to 			

	 another represents a distance and the distance from a point on a coordinate plane to an axis is an absolute value Given coordinates for the vertices, polygons can be drawn in the coordinate plane and solve real world problems 	uisition
Ctu	lents will know	Students will be skilled at
Stud		Scudents will be skilled ut
		• Locating integers and other rational numbers on the number line
	compare	 Using precise mathematical vocabulary to discuss
	integers	positive and negative numbers, as well as vertical
	 integels inequality 	and horizontal lines to show integers
	 inequality symbols 	 Using positive, negative numbers and zero to
	negative numbers	represent real world problem such as bank
	opposite numbers	account balances, temperature, and sea levels
	• origin	 Plotting integers on the number line and
	• perimeter	coordinates in all four quadrants of a coordinate
	• polygon	plane; Quadrant I (+,+), Quadrant II (-,+),
	 positive numbers 	Quadrant III (-,-) and Quadrant IV (+,-)
	rational numbers	 Reasoning that the opposite of the opposite of
	• reflection	the numbers is the number itself such as (-(-3)), as
	• quadrants	well as zero is its own opposite
	whole numbers	Finding reflection points across axes
	 x-axis x-coordinate 	 Comparing using inequality symbols and order positive and negative numbers
	 v-axis 	 Writing and interpret inequalities in real world
	 v-coordinate 	situations
	,	 Interpreting absolute value in a real world
		situation
		 Making comparison between values regarding
		absolute value and model absolute value with
		number lines
		 Explaining orally, in journals or exit slips the
		reasoning that as the value on a negative rational
		number decreases, its absolute value (distance
		from zero) increases
		Solving real world problems by graphing points in
		all four quadrants of the coordinate plane

	•	Finding distances between points in the coordinate plane by using coordinates and
		absolute value
	•	Drawing polygons in the coordinate plane, given
		coordinates for the vertices

	Stage 2	2 – Evidence
Code	Evaluative Criteria	Assessment Evidence
T, M, A	Rubric Criteria:	PERFORMANCE TASK(S):
	Mathematical Concepts:	Goal: Use real data accumulated in Nome, Alaska, over eight days, to answer
	4 - Explanation shows complete understanding of	questions accurately about temperature by interpreting and comparing points in
	mathematical concepts.	the coordinate plane.
	3 - Explanation shows substantial understanding of	Role: Interpreter of data in graphs
	mathematical concepts.	Audience: Classmates
	2 - Explanation shows some understanding of	Products: This task focuses students' attention on the y-values of the points,
	mathematical concepts.	asking for the greatest y-value and the least y-value, as well as the greatest
	1 - Explanation shows very limited understanding of	difference between y-values when the x-values are the same.
	mathematical concepts OR is not written.	Standards for Success: scoring rubric including focus on explanation, process
	Strategy/Procedures:	and accuracy of the solution
	4 - Uses an efficient and effective strategy to solve the	Differentiation: For more advanced students you can challenge them by using
	problem(s).	the task that challenges them to find distances between points.
	3 - Uses an effective strategy to solve the problem(s).	
	2 - Sometimes uses an effective strategy to solve the	
	problem(s), but does not do it consistently.	
	1 - Rarely uses an effective strategy to solve the	
	problem(s).	
	Mathematical Errors:	
	4 - 90-100% of the steps and solutions have no	
	mathematical errors.	
	3 - Almost all (85-89%) of the steps and solutions have	
	no mathematical errors.	
	2 - Most (75-84%) of the steps and solutions have no	
	mathematical errors.	
	1 - More than 75% of the steps and solutions have	
	mathematical errors.	
	Completion:	
	4 - All problems are completed.	

	3 - 75% of all problems are completed.	
	2 - 50% of all problems are completed.	
	1 - 25% or less of problems are completed.	
	Neatness and Organization:	
	4 - The work is presented in a neat, clear, organized	
	fashion that is easy to read.	
	3 - The work is presented in a neat and organized	
	fashion that is usually easy to read.	
	2 - The work is presented in an organized fashion but	
	may be hard to read at times.	
	1 - The work appears sloppy and unorganized. It is	
	hard to know what information goes together	
		OTHER EVIDENCE:
T, M, A		Embedded Assessment 1: Positive numbers, negative numbers and absolute
		value
T, M, A		Embedded Assessment 2: Coordinate system and problem solving
		Common Unit Test: Units CFA
T, M, A		Skill Check: Daily Warm-ups and/or Exit Tickets
M, A		Prompt : Given a point in the coordinate plane, what possible pair of coordinates
М, А		can show the reflection of that point? Explain through an example
		Lemework Almost doily
T, M, A		Homework: Almost dally

STAGE 3		
	Stage 3 – Learning Plan	
Code	Pre-Assessme	nt
м	Unit Pre-Assessment	
М	• Teacher monitors for prerequisite understanding(s) and misconcept	ion(s) though warm up questions
	Summary of Key Learning Events and Instruction	Progress Monitoring
М	• Students will work independently to complete pre-assessment of prior knowledge involving the ability to locate whole numbers/fractions/decimals, compare and order positive numbers, plot points in the first quadrant of the coordinate plane, find perimeter and area of rectangle ; teacher will plan and facilitate learning to clarify any prior misconception foundational	 Warm ups Classwork IXL Homework Exit Tickets Embedded Assessments
T, A	 Teacher will select an activity or 3 Act task to spike curiosity and engagement with number lines; Example: Students work with partner(s) to place cards with a mix of whole numbers, integers, decimals in an open number line using prior knowledge and reasoning. 	Mid-Unit Assessment
A	 Teacher will engage students by presenting a lesson to introduce and to help students explore with multiple examples using positive, negative integers and zero to represent real world situations such as bank accounts with credits and debits, temperature, and above and below sea levels. 	
A	 Teacher will engage students through an activity such as a 3 Act Task to introduce the need of a coordinate system (this will be brought up later while learning about and using the coordinate system); students investigate the use of both vertical and horizontal number lines to illustrate real world scenarios. 	
Т, А	• Teacher will engage students in activity(s) that allow students to create their own examples of real word scenarios of positive and negative numbers on number lines and explain orally in groups the explanation of 0 in each situation.	
Т, А	 Teacher will engage students in activity(s) that allow students to use appropriate vocabulary to respond to problems that involve plotting rational numbers and integers on number lines. 	
A	 Teacher will engage and facilitate students in a discussion around 	

	a number line that allows students to discover that a number and	
	its opposite are equidistant from zero. Students learn that the	
	opposite sign (-) shifts the number to the opposite side of 0;	
	remind students that zero is its own opposite. Students will	
	practice placing numbers on vertical or horizontal lines such as -4.	
	7. 1. 5.29. $\frac{1}{2}$. 6/2 and justify their order.	
А	 Teacher will engage students in activity(s) that allow students to 	
	help students relate graphing points and reflecting across zero on	
	a number line to graphing and reflecting points across axes on a	
	coordinate grid. Teacher facilitates through questioning the	
	discovery and recognition of the quadrants and the signs	
	Students practice identifying the quadrants for ordered pairs	
	hased on the knowledge of the quadrant's signs	
Δ	 Teacher will develop a lesson that engages students to discover 	
~	the absolute value and recognize the symbols LL as representing	
	absolute value. Students recognize that although with negative	
	numbers like -5 is less than -3 in value, the absolute value	
	(distance of a rational number from zero) increases: viceversa	
	with negative numbers, as the absolute value decreases the value	
	increases. It is important for students to use many examples in	
	adjusting their thinking in a real life context	
тΔ	 Teacher will provide and facilitate examples where students will 	
1, 7 (continue to practice real world scenarios using the absolute value	
	of numbers to answer questions like "Gia has -30 dollars in her	
	account. What does that mean? Is a halance of -40 dollars	
	greater?	
T. A	 Teacher will provide and facilitate examples where students will 	
.,	continue to practice vocabulary terms using examples and	
	non-examples and teachers ensure that multiple experiences are	
	provided for students to understand the relationship between	
	numbers, absolute value, and statements about order.	
Т, А	• Teacher will provide and facilitate examples where students will	
	continue to practice using language related to integers and	
	absolute value like: nerver, always, increase, decrease, farther,	
	closest, above, below, have owe, gained, lost distance from zero,	
	to the left, to the right, greater than, less than to interpret and	
	absolute value in real world situations and to explain how	
	ordering absolute values compares to ordering rational numbers	
А	• Assess students acquisition of the learning at this point in time	

А	Review assessment and allow for opportunities to view common	
	mistakes and misconceptions	
Т, А	• Teacher refers back to the 3 Act Task about finding points in the	
	plane and need for the coordinate system and continues to	
	engage students in a learning experience to plot ordered pairs and	
	identify the coordinates in all four quadrants of the coordinate	
	plane.	
A	Teacher will develop and introduce a lesson to engage students in	
	understanding that when two ordered pairs differ only in the signs	
	of their coordinates the points are reflections of each other across	
	one or both axes; Students engage in an activity in groups by	
	creating a coordinate grid on the floor and stand in points or place	
	objects making sure that the two points have either the same first	
	coordinate or second coordinate. Students lead to conclude that	
	when one person/object is one the same x or y coordinate you are	
	on the same line.	
А	Students will continue to practice problems plotting points on all	
	four quadrants of the coordinate palace and finding distances	
	between points with the same first coordinate or the second same	
	coordinate by using absolute value.	
Т, А	 Teacher will develop a lesson that engages students by drawing 	
	polygons in the coordinate plane given the coordinates for the	
	vertices and solve problems involving these polygons.	
Т	Performance Task: Students will describe a real world scenario	
	involving temperature with real data accumulated in Nome,	
	Alaska over eight days by answering the questions accurately.	
A	Assess students acquisition of the learning at this point in time	
A	Review assessment and allow for opportunities to view common	
	mistakes and misconceptions	

UNIT 3 - UNDERSTAND AND MODEL THE DIVISION WITH FRACTIONS

	Stage 1 Desired Results	
ESTABLISHED GOALS	Tr	ansfer
CCSS.MATH.CONTENTINS.A.T. Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2/3) \div (3/4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2/3) \div (3/4)$ = $8/9$ because $3/4$ of $8/9$ is $2/3$ (In	Students will be able to communicate precisely with other discussing the understanding and procedure for dividing Mo UNDERSTANDINGS Students will understand that • A multiplication equation involving fractions is related to division of fractions and are inverse operations • Division of fractions by fractions can be	ers, use clear mathematical language, and model when fractions. eaning ESSENTIAL QUESTIONS Students will keep considering 1. How are multiplying fractions and dividing fractions connected? 2. Why does a fraction get smaller if multiplied by another fraction? Why does it grow if multiplied by a whole sumpley gracter than 12
general, (a/b) ÷ (c/d) = ad/bc.) How much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 3/4-cup servings are in 2/3 of a cup of yogurt? How wide is a rectangular strip of land with length 3/4 mi and area 1/2 square mi?.	 represented with visuals diagrams, manipulatives and equations to solve real world problems Problems can be written to match a given expression involving division of fractions Quotients can be interpreted in real world scenarios when dividing fractions A fractional divisor can represent the size of the group in a division scenario Division of fractions can be written procedurally using the multiplicative inverse 	 3. Why can you multiply by the reciprocal when dividing fractions? 4. What are the steps for dividing a fraction by fraction? Can we use common denominators to divide fraction by fraction?
	Acq	uisition
	Students will know • common denominator • dividend • divisor • fraction • quotient • reciprocal	 Students will be skilled at Explaining the meaning of the quotient relative to a division of fractions expression (for example: students will explain that 3/4 ÷ 1/2 asks how many halves are in three-fourths; there is one half and a half of a half in three-fourths) Explaining the division of a fraction by a fraction using representations Estimating the quotient of an expression that divides a fraction by a fraction (for example: 3/4 ÷ 1/2 will be more than 1 because 1/2 is less than

	3/4 therefore there will be 1 whole half and some
	more in 3/4. Conversely, $1/5 \div 1/2$ will yield a
	quotient less than 1 because 1/2 is greater than
	1/5 so there cannot be one whole half in 1/5 of
	something.)
	 Connecting a representation of division of a
	fraction by a fraction to an equation.
	• Dividing a fraction by a fraction using a strategy
	• Solve word problems using division of fractions
	and interpret quotients

	Stage 2	2 – Evidence
Code	Evaluative Criteria	Assessment Evidence
T, M, A	Rubric Criteria:	PERFORMANCE TASK(S):
	Mathematical Concepts:	Goal: Use a real life scenario to identify and model the time needed to the next
	4 - Explanation shows complete understanding of	exit while stuck in a traffic jam.
	mathematical concepts.	Role: Calculating time traveled
	3 - Explanation shows substantial understanding of	Audience: Classmates
	mathematical concepts.	Products: Model and calculate the time needed to the near exit using fractions
	2 - Explanation shows some understanding of	in a real life scenario
	mathematical concepts.	Standards for Success: scoring rubric including focus on explanation, process
	1 - Explanation shows very limited understanding of	and accuracy of the solution
	mathematical concepts OR is not written.	Differentiation: For more advanced students you can challenge them to use
	Strategy/Procedures:	estimation in doubling or tripling the quantities. Consider students of language
	4 - Uses an efficient and effective strategy to solve the	learners and accommodations by providing vocabulary with images, as well as a
	problem(s).	calculator, place value charts or graphic organizer to assist with the algorithms
	3 - Uses an effective strategy to solve the problem(s).	and organization.
	2 - Sometimes uses an effective strategy to solve the	
	problem(s), but does not do it consistently.	
	1 - Rarely uses an effective strategy to solve the	
	problem(s).	
	Mathematical Errors:	
	4 - 90-100% of the steps and solutions have no	
	mathematical errors.	
	3 - Almost all (85-89%) of the steps and solutions have	
	no mathematical errors.	
	2 - Most (75-84%) of the steps and solutions have no	
	mathematical errors.	
	1 - More than 75% of the steps and solutions have	
	mathematical errors.	
	Completion:	
	4 - All problems are completed.	
	3 - 75% of all problems are completed.	
	2 - 50% of all problems are completed.	
	1 - 25% or less of problems are completed.	
	Neatness and Organization:	
	4 - The work is presented in a heat, clear, organized	
	rashion that is easy to read.	

	3 - The work is presented in a neat and organized	
	fashion that is usually easy to read.	
	2 - The work is presented in an organized fashion but	
	may be hard to read at times.	
	1 - The work appears sloppy and unorganized. It is	
	hard to know what information goes together	
		OTHER EVIDENCE:
T, M, A		Embedded Assessment 1: Estimation of quotients involving fractions in real life
		scenarios
T, M, A		Common Unit Test: CFA Division of Fractions
M, A		Skill Check: Daily Warm-ups and/or Exit Tickets
M, A		Prompt : You divide two fractions, and the numerator of the quotient is a 4.
тмл		What could the fractions be?
i, ivi, A		Homework: Almost daily

	Stage 3 – Learning Plan	
Code	Pre-Assessment	
Μ	Unit Pre-Assessment	
М	 Teacher monitors for prerequisite understanding(s) and misconcepti 	on(s) though warm up questions
	Summary of Key Learning Events and Instruction	Progress Monitoring
Μ	 Students will work independently to complete pre-assessment of 	Warm ups
	prior knowledge involving knowledge of fractions (unit fractions,	Classwork
	proper fraction, improper fractions, mixed fractions, equivalent	• IXL
	fractions), conceptual understanding of division with unit fractions	Homework
	(whole number unit fraction and unit fraction by whole number)	Exit Tickets
	using area models/bar models/ and number lines to represent	 Embedded Assessments
	them; teacher will plan and facilitate learning to clarify any prior	Mid-Unit Assessment
	misconception foundational to the new learning.	
Т, А	 Teacher will begin teaching division of fractions with a concrete 	
	hands-on model such as pattern blocks that students can engage,	
Т, А	explore, discuss. Students explore the relationships between the	
	shapes and answer questions such as: How many $\%$'s fit into a	
	trapezoid and students show visually that three triangles (%'s) fit	
	into a trapezoid ($\frac{1}{2}$).	
Т, А	• Teacher will continue to engage students in exploring the idea	
	that dividing with fractions is determining how many fraction size	
	parts fit into the given (dividend) total amount. Students continue	

	to practice understanding quotients of fractions using familiar	
	scenarios and visual representation. For example: Three people	
	share ½ of a pizza. How many pieces does each person get?	
	Students draw a diagram to show that each person gets ½ of a	
	pizza.	
Т, А	• Teacher will develop a lesson to engage students in estimating the	
	quotient of an expression that divides a fraction by a fraction (for	
	example: $3/4 \div 1/2$ will be more than 1 because $1/2$ is less than	
	3/4 therefore there will be 1 whole half and some more in 3/4.	
	Conversely, $1/5 \div 1/2$ will yield a quotient less than 1 because $1/2$	
	is greater than 1/5 so there cannot be one whole half in 1/5 of	
	something.) Students will practice estimating using real world	
	scenarios.	
A	 Assess students acquisition of the learning at this point in time 	
A	 Review assessment and allow for opportunities to view common 	
	mistakes and misconceptions	
I, A	 leacher will develop a lesson to engage students in dividing 	
	fractions by a whole number and discuss the idea of decomposing	
	a fraction into equal parts. Students will understand, discuss and	
	practice that dividing by a fraction, the quotient is sometimes	
Τ Δ	greater than the university of angage students to develop	
1, A	 reacher will develop a lesson to engage students to develop strategies for dividing fractions in context, including mixed 	
	numbers. Explore equivalent fractions and the use of the	
	reciprocals.	
T. A	 Teacher will develop a lesson to engage students to develop 	
,	strategies for solving problems involving division with fraction.	
	Students continue to develop why and how to multiply by the	
	reciprocal when dividing by a fraction.	
Т, А	 Teacher will engage students and facilitate groups on a real life 	
	task to apply learning in this unit and importance of fraction	
	application in everyday life situations: How many biscuits can you	
	make?	
Т	 Performance Task: Students will model and calculate the time 	
	needed to the near exit using fractions in a real life scenario.	
Т, А	 Assess knowledge and application though the unit CFA and review 	
	misconceptions as needed.	

UNIT 4 - RATIOS AND RATES

Stage 1 Desired Results

ESTABLISHED GOALS CCSS.MATH.CONTENT.RP.A.1:

Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1. because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."

CCSS.MATH.CONTENT.RP.A.2:

Understand the concept of a unit rate a/b associated with a ratio a:b with b \neq 0, and use rate language in the context of a ratio relationship. For example. "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for each cup of sugar." "We paid \$75 for 15 hamburgers, which is a rate of \$5 per hamburger."1

Students will be able to independently use their learning to attend to the meaning and model symbolically with mathematics real-life situations involving ratios.

Transfer

Meaning

ESSENTIAL OUESTIONS

rates?

Students will keep considering...

two quantities or measures?

proportional relationships?

1. How can you represent the relationship between

2. What is a rate and how do you identify equivalent

number lines, ratio tables, coordinate plane, etc)

3. How can I use models (tape diagrams, double

to display an understanding of ratios and

UNDERSTANDINGS Students will understand that...

- A ratio is a relationship or comparison of two quantities, or measures, where there are *a* units of one quantity for every *b* units of the other
- Equivalent ratios make the same comparison • and knowledge about the multiples and factors can be used to find equivalent ratios
- Order is important when writing a ratio and • ratios are written or expressed as: a to b, a:b, or a/b
- A ratio can compare two parts or a part and a whole
- Reasoning about equivalent ratios can help • find the amount of one quantity when you know the amount of the other quantity
- A rate is a special ratio that compares two quantities with different units of measure; for example a truck going 200 miles on 10 gallons of gas
- A unit rate expresses a ratio as a part to one
- The Queien concurred to intermeter the convert

per/@

•

 The @ sign can used to interpret rate, as well as words per and/or each 	
Acc	uisition
Students will know	Students will be skilled at
• compare	 Using ratio language to describe a ratio
 constant of proportionality 	relationship between two quantities
 equivalent ratio 	• Using ratio reasoning to solve real world problems

limited to non-complex fractions

1 Expectations for unit rates in this grade are

• Identify and write equivalent ratios

 proportion rate ratio ratio language ratio table simplify a ratio tape diagram unit rate 	 Justifying solutions to ratio problems using ratio language and models Using models to show and identify rates Using division to find unit rates Solve unit rate problems involving contact speed and unit pricing Using unit rates to find unknown values Using unit rate to convert measurement units
---	--

	Stage 2 – Evidence		
Code	Evaluative Criteria	Assessment Evidence	
T, M, A	Rubric Criteria:	PERFORMANCE TASK(S):	
	Mathematical Concepts:	Goal: Use a real life scenario to identify which purchase of carrots is the best buy	
	4 - Explanation shows complete understanding of	by applying ratio understanding and utilizing problem solving strategies.	
	mathematical concepts.	Role: Problem solver by utilizing information given and identity the best rate	
	3 - Explanation shows substantial understanding of	Audience: Classmates in groups	
	mathematical concepts.	Products: Using a problem solving framework, evidence and transfer knowledge	
	2 - Explanation shows some understanding of	to identify the best buy for the money	
	mathematical concepts.	Standards for Success: scoring rubric including focus on explanation, process	
	1 - Explanation shows very limited understanding of	and accuracy of the solution	
	mathematical concepts OR is not written.	Differentiation: For more advanced students you can challenge them to use	
	Strategy/Procedures:	estimation in doubling or tripling the quantities. Consider students of language	
	4 - Uses an efficient and effective strategy to solve the	learners and accommodations by providing coin values with images, as well as a	
	problem(s).	calculator, place value charts or graphic organizer to assist with the algorithms	
	3 - Uses an effective strategy to solve the problem(s).	and organization	
	2 - Sometimes uses an effective strategy to solve the		
	problem(s), but does not do it consistently.		
	1 - Rarely uses an effective strategy to solve the problem(s).		
	Mathematical Errors:		
	4 - 90-100% of the steps and solutions have no		
	mathematical errors.		
	3 - Almost all (85-89%) of the steps and solutions have		
	no mathematical errors.		
	2 - Most (75-84%) of the steps and solutions have no		
	mathematical errors.		

	1 - More than 75% of the steps and solutions have	
	mathematical errors.	
	Completion:	
	4 - All problems are completed.	
	3 - 75% of all problems are completed.	
	2 - 50% of all problems are completed.	
	1 - 25% or less of problems are completed.	
	Neatness and Organization:	
	4 - The work is presented in a neat, clear, organized	
	fashion that is easy to read.	
	3 - The work is presented in a neat and organized	
	fashion that is usually easy to read.	
	2 - The work is presented in an organized fashion but	
	may be hard to read at times.	
	1 - The work appears sloppy and unorganized. It is	
	hard to know what information goes together	
		OTHER EVIDENCE:
T, M, A		Embedded Assessment 1: Understanding Concept of Ratio and Language
T, M, A		Embedded Assessment 2: Unit rate and unit rate problems
		Common Unit Test: Ratios and Rates
T, M, A		Skill Check: Daily Warm-ups and/or Exit Tickets
Μ, Α		Prompt : If we know the ratios of a part to total, how can we find the part to part
Μ, Α		ratio? Give an example and describe why the order of the ratio symbol is
		important
		Homowork: Almost doily
T, M, A		nomework. Annost dany

	Stage 3 – Learning Plan	
Code	Pre-Assessment	
M	Unit Pre-Assessment	
M	 Teacher monitors for prerequisite understanding(s) and misconception 	ion(s) though warm up questions
	Summary of Key Learning Events and Instruction	Progress Monitoring
M	 Students will work independently to complete pre-assessment of 	Warm ups
	prior knowledge involving factors and multiples of whole	Classwork
	numbers, equivalent fractions, multiplicative comparison	• IXL
	describing one quantity as <i>n</i> time another quantity; teacher will	Homework
	plan and facilitate learning to clarify any prior misconception	Exit Tickets
	foundational to the new learning.	 Embedded Assessments
A	 Teacher will engage students by presenting an activity to help 	Mid-Unit Assessment
	students explore and discuss that a ratio is a relationship or	
	comparison of two quantities or measures. Students discover by	
	looking at images and develop ratio language to describe them	
	such as "There are 3 game controllers for each screen."	
A	• Teachers will develop and present engaging warm-up questions to	
	help explain the similarities and differences of fractions and ratios.	
	Students review and practice equivalent fractions.	
Т, А	• Teacher will develop a lesson and engage learners with the idea of	
	comparing two quantities by describing how many units of one	
	quantity there are for every x units of another quantity. Students	
	understand and practice that ratio language can be used to	
	compare two quantities.	
Т, А	 Teacher will develop a lesson and engage learners with the idea 	
	that a ratio can compare quantities in different units or quantities	
	that represent parts of a larger whole. Students understand and	
	practice using mathematical notation to represent ratios.	
	• Teacher will model the use of tape diagrams, ratio tables, and	
Т, А	picture diagrams to show how to represent ratios. Students	
	explore the idea that two different ratios can express the same	
	comparison.	
Т, М	 Students will practice independently and in teacher created 	
	groups the process of finding ratios in part to part, part to whole	
	comparisons.	
T, M, A	 Assess students' knowledge and application and review 	
	misconceptions.	

А	• Teacher will use real-world examples to explain the concept of	
	unit rates. Teacher will model the use of unit rates in real world	
	situations	
Т, А	 Students will continue to explore the relationship between unit 	
	rates and ratios in simple real life scenarios in small groups.	
T, M, A	 Students will practice independently to solve problems including 	
	the use of unit rates in simple real life scenarios.	
T, M, A	 Assess students' knowledge and application and review misconceptions 	
т	 Performance Task: Use a real life scenario to identify which 	
	purchase of carrots is the best buy by applying ratio	
	understanding and utilizing problem solving strategies.	
Т, А	• Assess knowledge and application though the unit CFA and review	
	misconceptions as needed.	

UNIT 5 - EXPRESSIONS, EQUATIONS AND INEQUALITIES

Stage 1 Desired Results	
Tr	ansfer
Students will be able to independently use their learning to model, graph and solve real-world scenarios through the	
application of algebraic thinking.	
M	eaning
 UNDERSTANDINGS Students will understand that Variables can be used to write and evaluate expressions with whole number exponents Any base to the zero power is 1 Properties can be used to generate equivalent expressions and identify equivalence Variables can be used to represent, write, and solve equations and inequalities for real world problems What it means to solve an equation and what is meant by a solution of an equation An equation with variables can be true or false depending on the value substituted for the variable 	 ESSENTIAL QUESTIONS Students will keep considering 1. How can you apply properties of operations to generate equivalent expressions? 2. How can variables be used to represent and solve equations and inequalities in real world problems? 3. How can an equation be used to represent and solve a real world/mathematical situation?
 Solving an equation means finding a value for the variable that makes the equation true What it means to solve an inequality and what is the meaning of the solution Evaluate whether a number in a specific set is a solution to an inequality 	
Acquisition	
 algebraic expression associative property base (Of a power) coefficient commutative property of multiplication constant distributive property 	 Using whole-number exponents to represent repeated multiplication Writing a power as a repeated multiplication Writing numerical and algebraic expressions that involve exponents Evaluating numerical and algebraic expressions that contain exponents Applying order of operations with exponents
	Stage 1 Desired Results Tree Students will be able to independently use their learning application of algebraic thinking. M UNDERSTANDINGS Students will understand that • Variables can be used to write and evaluate expressions with whole number exponents • Any base to the zero power is 1 • Properties can be used to generate equivalent expressions and identify equivalence • Variables can be used to represent, write, and solve equations and inequalities for real world problems • What it means to solve an equation and what is meant by a solution of an equation • An equation with variables can be true or false depending on the value substituted for the variable • Solving an equation means finding a value for the variable that makes the equation true • What it means to solve an inequality and what is the meaning of the solution • Evaluate whether a number in a specific set is a solution to an inequality Acc Students will know • algebraic expression • associative property • base (Of a power) • coefficient • commutative property of multiplication • constant • distributive property

example, apply the distributive property to the expression 3(2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6 (4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.

CCSS.MATH.CONTENT.EE.A.4:

Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions v + v + v and 3v are equivalent because they name the same number regardless of which number y stands for..

CCSS.MATH.CONTENT.EE.A.5:

Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

CCSS.MATH.CONTENT.EE.A.6:

Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number. or. depending on the purpose at hand, any number in a specified set.

CCSS.MATH.CONTENT.EE.A.7:

Solve real-world and mathematical problems by writing and solving equations of the form x + p = q and px =q for cases in which p, q and x are all nonnegative rational numbers. CCSS.MATH.CONTENT.EE.A.8:

Write an inequality of the form x > c or x< c to represent a constraint or condition in a real-world or

- equation •
- equivalent •
- equivalent expressions
- evaluate .
- exponent
- expression(s) .
- factor
- inequality
- like terms •
- multiplicative identity
- nonnegative rational numbers
- numerical expressions •
- power •
- power of 10 ٠
- product •
- properties
- quantity •
- auotient •
- substitution
- sum
- term
- variable(s)

- Communicating orally and/or in writing about representing and evaluating expressions using precise vocabulary
- Applying the distributive property to a sum of two whole numbers
- Applying the distributive property to algebraic expressions
- Combining like terms
- Recognizing and generate equivalent expressions •
- Using substitution to show whether a number in a specific set is a solution of an equation
- Writing one step equations to model real world and mathematical problems
- Solving one step equations by using algebraic reasoning and bar models that represent equations such as 3X = 30
- Interpreting the solution to an algebraic equation in real world scenarios
- Writing inequalities to represent real world scenarios
- Graphing solutions of inequalities •

mathematical problem. Recognize that	
inequalities of the form $x > c$ or $x < c$	
have infinitely many solutions; represent	
solutions of such inequalities on	
number line diagrams.	
CCSS.MATH.CONTENT.NS.B.4:	
Find the greatest common factor of two	
whole numbers less than or equal to	
100 and the least common multiple of	
two whole numbers less than or equal	
to 12. Use the distributive property to	
express a sum of two whole numbers	
1-100 with a common factor as a	
multiple of a sum of two whole	
numbers with no common factor. For	
example, express 36 + 8 as 4(9+2).	

	Stage 2	2 – Evidence
Code	Evaluative Criteria	Assessment Evidence
T, M, A	Rubric Criteria:	PERFORMANCE TASK(S):
	Mathematical Concepts:	Goal: Use a real life scenario to identify an algebraic expression that describes
	4 - Explanation shows complete understanding of	the number of children that can sit around a row of <i>n</i> tables.
	mathematical concepts.	Role: working in groups to find solution(s)
	3 - Explanation shows substantial understanding of	Audience: Classmates
	mathematical concepts.	Products: Through teacher facilitation, students in groups will investigate, model
	2 - Explanation shows some understanding of	and develop an algebraic expression to count the number of children who can sit
	mathematical concepts.	at the table(s) in various scenarios
	1 - Explanation shows very limited understanding of	Standards for Success: scoring rubric including focus on explanation, process
	mathematical concepts OR is not written.	and accuracy of the solution
	Strategy/Procedures:	Differentiation: For more advanced students you can challenge them to use
	4 - Uses an efficient and effective strategy to solve the	estimation and investigate various shapes for tables like squares. Consider
	problem(s).	students of language learners and accommodations by providing images, as well
	3 - Uses an effective strategy to solve the problem(s).	as a calculator, place value charts or graphic organizer to assist with the
	2 - Sometimes uses an effective strategy to solve the	algorithms and organization.
	problem(s), but does not do it consistently.	
	1 - Rarely uses an effective strategy to solve the	
	problem(s).	
	Mathematical Errors:	
	4 - 90-100% of the steps and solutions have no	
	Mathematical errors.	
	no mathematical errors	
	2 - Most (75-84%) of the steps and solutions have no	
	mathematical errors	
	1 - More than 75% of the steps and solutions have	
	mathematical errors	
	Completion:	
	4 - All problems are completed.	
	3 - 75% of all problems are completed.	
	2 - 50% of all problems are completed.	
	1 - 25% or less of problems are completed.	
	Neatness and Organization:	
	4 - The work is presented in a neat, clear, organized	
	fashion that is easy to read.	

	 3 - The work is presented in a neat and organized fashion that is usually easy to read. 2 - The work is presented in an organized fashion but may be hard to read at times. 1 - The work appears sloppy and unorganized. It is hard to know what information goes together 	
T, M, A T, M, A T, M, A M, A M, A M, A		OTHER EVIDENCE: Embedded Assessment 1: Parts of Expressions, Writing Expressions Embedded Assessment 2: Parts of equations, representing and solving mathematical problems Embedded Assessment 3: Understanding, solving and graphing inequalities Common Unit Test: Expressions, Equations and Inequalities Skill Check: Daily Warm-ups and/or Exit Tickets Prompt: What is the best way to represent and analyze a relationship between variables?
T, M, A		Homework: Almost daily

Stage 3 – Learning Plan		
Code	Pre-Assessme	nt
М	Unit Pre-Assessment	
М	 Teacher monitors for prerequisite understanding(s) and misconcepti 	ion(s) though warm up questions
	Summary of Key Learning Events and Instruction	Progress Monitoring
М	 Students will work independently to complete pre-assessment of 	Warm ups
	prior knowledge involving; a) understanding and evaluation of	Classwork
	powers of 10, b) understanding and application of the order of	• IXL
	operations in expressions (without exponents), c) reading, writing	Homework
	and evaluating algebraic expressions (without exponents). Teacher	Exit Tickets
	will plan and facilitate learning to clarify any prior misconception	 Embedded Assessments
	foundational to the new learning.	 Mid-Unit Assessment
А	 Teacher will develop and facilitate a lesson that explores the idea 	
	that writing repeated multiplication using exponents is related to	
	modeling area and volume. Students understand and practice that	
	exponents are an efficient notation for representing repeated	
	multiplication.	
Т, А	 Teacher will develop an engaging lesson for students to explore 	
	through modeling with squares and cubes scenarios like 3^2 and	

	3^3, as well as write exponential notations for examples such as 5	
	x 5 x 5 x 5 x 5 and evaluate a variety of examples such as 4^4 , 4 +	
	$2^4 * 2$, and $6 + 3^3$.	
I, A	 leacher will develop and facilitate a lesson that develops 	
	strategies for writing and evaluating expressions with exponents	
	with no variables in real world context. Students recognize and	
	practice that a power can be evaluated by thinking of the	
	repeated multiplication and grouping the factors in a convenient	
	way. Students discuss and engage in discovery through patterns to	
	identify what happens to the value of the power each time the	
T A	exponents increase or decrease by 1.	
I, A	 leachers will develop engaging scenarios that develop and such as a start size for writing and such at a second scenarios. 	
	emphasize strategies for writing and evaluating expressions with	
	exponents (no variables yet) in real world context. Students	
	practice and refine the knowledge that exponents are evaluated	
	phor to multiplication, addition of subtraction. Students continue	
	expressions	
тм	 Teacher will present warm-up questions beloing explain the 	
1, 101	concent of using variables in a math problem. Students must	
	engage in opportunities to translate expressions from verbal	
	expressions to numerical ones and from numerical expressions to	
	verbal expressions.	
т. м	 Students will engage in refining translating numerical expressions 	
	into word form and from a word form into variable expressions.	
	Teacher will facilitate further the development of understanding	
	for the parts of an algebraic expression, including variables	
	coefficients, constants and the name of operations (sum,	
	differences, product and quotient).	
Т, А	 Teacher will develop opportunities for students to use 	
	multiplication to interpret $2(3 + x)$ as two groups of $(3 + x)$ and	
	have students use manipulative and/or other methods to create	
	an array. Students will further use manipulative to interpret y as	
	referring to one y and 3y as referring to 3y while discussing the	
	distributive property, the multiplicative property of 1 and the	
	commutative property to prove that $3y = y + y + y$.	
T, M, A	Students will further explore the different parts of an algebraic	
	expression and recognize that algebraic expressions are	
	equivalent if they can be rewritten in exactly the same form	

T, M, A	 Assess students' knowledge and application and review 	
	misconceptions.	
Т, А	 Teacher will develop and introduce through an engaging lesson 	
	the idea of using a bar model to model an equation with and	
	without a variable. Students will understand that the equal sign	
	shows that the expressions on both sides have the same value. In	
	addition, students understand that the value of a variable that	
	makes an equation true is the solution to the equation.	
Т, А	 Teacher develops a lesson to engage students in drawing 	
	comparisons between expressions and equations. Note that it is	
	critical for students to be given multiple experiences and to focus	
	on the understanding of the meaning of solving an expression or	
	equation before developing the procedural.	
Т, А	 Teacher continues to engage students to understand that solving 	
	an equation means finding a value of the variable that makes the	
	equation true. Students practice using substitution to show	
	whether a number in a specific set is a solution.	
Т, А	• Teacher will engage students in writing one step equations to	
	model real world and mathematical problems. Students continue	
	to solve one step equations by using algebraic reasoning, as well	
T A	as interpret the solution to an algebraic equation in context.	
I, A	 leacher will engage students in real life scenarios to understand 	
	what it means to solve inequalities and what is meant by a	
	solution of an inequality. Students determine whether a number	
та	In a specific set is a solution of an inequality.	
I, A	 Students are engaged in writing inequalities to represent real world scenarios and understand that inequalities have infinitely. 	
	wond scenarios and understand that inequalities have infinitely many solutions. Students practice graphing solutions to the	
	inequalities	
тма	 Assess students' knowledge and application and review 	
т	misconcentions	
	 Performance Task: Students will use a real life scenario to identify 	
	an algebraic expression that describes the number of children that	
T, A	can sit around a row of n tables.	
,	• Assess knowledge and application though the unit CFA and review	
	misconceptions as needed.	

UNIT 6 - PROPORTIONAL RELATIONSHIPS AND ALGEBRAIC REASONING

	Stage 1 Desired Results		
ESTABLISHED GOALS	Transfer		
CCSS.MATH.CONTENT.RP.A3:			
Use ratio and rate reasoning to solve	Students will be able to independently use their learning	to model with mathematics real life situations using	
real-world and mathematical problems,	variables to represent two quantities symbolically, graph	nically, tabularly and contextually.	
e.g., by reasoning about tables of	Me	eaning	
equivalent ratios, tape diagrams, double	UNDERSTANDINGS	ESSENTIAL QUESTIONS	
	Students will understand that	Students will keep considering	
Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. CCSS.MATH.CONTENT.RP.A.3.B Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed? CCSS.MATH.CONTENT.RP.A.3.C Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent. CCSS.MATH.CONTENT.RP.A.3.D Use ratio reasoning to convert measurement units; manipulate and	 Division is used to find unit rates in problems such as the ones involving constant speed and unit pricing Unit rates can be used to find unknown values in equivalent ratios when three or four values are given Proportional relationships can be graphed in terms of dependent and independent variables Dependent and independent variables represent a relationship between two quantities Unit rates are used to convert measurements Equations represent a dependent variable Graphs and tables are used to analyze the relationships between dependent and independent and independent variable A percent is a rate per 100 Models are used to show and identify percents in real world scenarios 	 How can rates, ratios, and proportional reasoning help us better understand the use of ratios and rates in the world around us? How can I use models (tape diagrams, double number lines, ratio tables, coordinate plane, etc) to display an understanding of ratios and proportional relationships? How can you distinguish between an independent variable and a dependent variable? How does the change in one variable affect the change in the other? How can you relate tables and graphs to equations? 	
transform units appropriately when	Acq	uisition	
multiplying of dividing quantities.	Students will know	Students will be skilled at	
1 Expectations for unit rates in this grade are limited to non-complex fractions.	 axis convert 	 Creating and interpreting a table of equivalent ratios 	
<u>CCSS.MATH.CONTENT.EE.C9:</u> Use variables to represent two quantities in a real-world problem that change in relationship to one another;	 dependent variable independent variable ordered pair rate 	 Using a table to compare and find missing values Plotting pairs of values from a table to a coordinate plane Reasoning and solve rate problems comparing 	

write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time.	 unit rate variable 	 two different units such as miles per minute Writing a percent rate as a rate over 100, including percents greater than 100 and less than 1 Finding the percents of a number using rate methods Representing relationships using models Converting units by dividing or multiplying Using variables to represent two quantities Identifying relationships between tables, graphs and equations Identifying a change in the independent variable creates a change in the depend variable and write equations to express a quantity in terms of the dependent and independent variable
---	---	---

Stage 2 – Evidence		
Code	Evaluative Criteria	Assessment Evidence
T, M, A	Rubric Criteria:	PERFORMANCE TASK(S):
	Mathematical Concepts:	Goal: Use a real life scenario students analyze the article and speeding ticket in
	4 - Explanation shows complete understanding of	order to reason, accurately convert and calculate the speed of the motorcycle.
	mathematical concepts.	Role: As mathematicians, students use ratio reasoning to investigate and derive
	3 - Explanation shows substantial understanding of	accurate solutions.
	mathematical concepts.	Audience: Classmates
	2 - Explanation shows some understanding of	Products: Using a problem solving framework, students convert measurement
	mathematical concepts.	units; manipulate and transform units appropriately when multiplying or
	1 - Explanation shows very limited understanding of	dividing quantities.
	mathematical concepts OR is not written.	Standards for Success: scoring rubric including focus on explanation, process
	Strategy/Procedures:	and accuracy of the solution
	4 - Uses an efficient and effective strategy to solve the	Differentiation: For more advanced students you can challenge them to develop
	problem(s).	equations, develop tables and graphs to represent the relationship between the
	3 - Uses an effective strategy to solve the problem(s).	speed and the fine. Consider students of language learners and
	2 - Sometimes uses an effective strategy to solve the	accommodations by providing images, as well as a calculator, place value charts
	problem(s), but does not do it consistently.	or graphic organizer to assist with the algorithms and organization.
	1 - Rarely uses an effective strategy to solve the	
	Mothematical Errors	
	4 - 90 - 100% of the steps and solutions have no	
	a - 50-100% of the steps and solutions have no	
	3 - Almost all (85-80%) of the steps and solutions have	
	no mathematical errors	
	2 - Most (75-84%) of the steps and solutions have no	
	mathematical errors	
	1 - More than 75% of the steps and solutions have	
	mathematical errors.	
	Completion:	
	4 - All problems are completed.	
	3 - 75% of all problems are completed.	
	2 - 50% of all problems are completed.	
	1 - 25% or less of problems are completed.	
	Neatness and Organization:	
	4 - The work is presented in a neat, clear, organized	
	fashion that is easy to read.	

	 3 - The work is presented in a neat and organized fashion that is usually easy to read. 2 - The work is presented in an organized fashion but may be hard to read at times. 	
	hard to know what information goes together	
		OTHER EVIDENCE:
T, M, A		Embedded Assessment 1: Using Unit Rates to Convert Measurement
T, M, A		Embedded Assessment 2: Graphing Proportional Relationships and Percents
T, M, A		Common Unit Test: Proportional Relationships and Algebraic Reasoning
M, A		Skill Check: Daily Warm-ups and/or Exit Tickets
М, А		Prompt: Why is it necessary to have a system of measurement and how does
		knowing about converting within a system or systems is an important life skill to
		understand real life situations?
T, M, A		Homework: Almost daily

Stage 3 – Learning Plan		
Code	Pre-Assessmet	nt
М	Unit Pre-Assessment	
M	 Teacher monitors for prerequisite understanding(s) and misconcepti 	on(s) though warm up questions
М	 Summary of Key Learning Events and Instruction Students will work independently to complete pre-assessment of prior knowledge involving ratio understanding, equivalent ratio tables, plotting pairs in the coordinate plane; teacher will plan and facilitate learning to clarify any prior misconception foundational 	Progress Monitoring Warm ups Classwork IXL Homework
Т, А	 to the new learning. Teacher will develop a lesson to engage students in exploring the idea that a rate contains information about equivalent ratios. Students will discuss and practice to understand that equivalent ratios have the same unit rate using tables and/ or double number lines. 	 Exit Tickets Embedded Assessments Mid-Unit Assessment
Т, А	 Teacher will develop a lesson to engage students in using various strategies for using unit rates to find an unknown quantity in an equivalent ratio. Students will discuss and practice to understand that real life rate problems can be solved by dividing numbers in a ratio to find the unit rate and use the unit rate as a multiplier to 	

	solve other mathematical problems.	
T. A	• Teacher will develop a lesson to engage students in using various	
,	strategies, like tables and double number lines, to compare two or	
	more ratios. Students practice to further understand unit rates in	
	context.	
Т, А	• Teacher will develop a lesson engaging students using various	
,	strategies to convert measurements by using ratio reasoning in	
	context within metric and customary systems. Students will	
	discuss and solve a variety of mathematical problems.	
т. м. а	 Assess students' knowledge and application and review 	
, ,	misconceptions.	
T. A	• Teacher will develop a lesson engaging students to explore that	
,	the value of one quantity (or variable) can depend on the value of	
	another quantity (or variable). Students explore and discuss real	
	life scenarios to determine which variable is independent and	
	which is dependent.	
Т, А	• Teacher will develop a lesson engaging students in strategies to	
	write an equation that represents the relationship between two	
	quantities. Students continue to master, through real life	
	examples, that an equation with two variables represents a	
	pattern that stands for the value of the independent variable to	
	the value of the dependent variable.	
Т, А	 Teacher will develop a lesson engaging students to explore 	
	strategies for analyzing the relationship between two quantities	
	such as tables and graphs to understand how the change in one	
	value changes the dependent one.	
Т, А	 Students discuss and practice, using real life scenarios, to analyze 	
	and represent relationships between two variables, as well as the	
	connections between the two.	
Т, А	 Teacher will develop a lesson engaging students to explore 	
	percents as a rate per 100. Students practice to understand the	
	modeling of percent(s) on a hundredths grid and/ or on a bar	
	model similar to a fraction representation.	
Т, А	Teacher will develop a lesson engaging students to understand	
	that a percent is another way to express a portion of a quantity. It	
	is critical that students discuss and practice to understand the	
	relationships between fractions, percents and decimals.	
т, А	• Students discuss and practice, using real life scenarios, percents at	
	a rate of 100.	

 T Performance Task: Students will T, A Assess knowledge and application though the unit CFA and review 	T, M, A	 Assess students' knowledge and application and review misconceptions.
 Assess knowledge and application though the unit CFA and 		misconceptions. Performance Task: Students will
	Т, А	 Assess knowledge and application though the unit CFA and review

UNIT 7 - APPLICATIONS OF GEOMETRY

ESTABLISHED GOALS CCSS.MATH.CONTENT.G.A.1:

Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems. **CCSS.MATH.CONTENT.G.A.2:**

Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = I w h and V = b h to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

CCSS.MATH.CONTENT.G.A.4:

Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.

Transfer	
Students will be able to independently use their learning to analyze and calculate the dimensions of various objects using standardized shapes and figures.	
M	leaning
 UNDERSTANDINGS Students will understand that Shapes can be put together and apart (composed and decomposed) to create shapes whose area is equal to that of the sum of the areas of the joining shapes or remaining Area formula are generalizations deriving from familiar shapes Area is two dimensional involving length and width (sometime either or can be referred to the height) Filling a solid with cubes and counting them 	 ESSENTIAL QUESTIONS Students will keep considering 1. How can you find the area of a polygon by decomposing (deconstructing) it into other shapes? 2. What is volume and how does it relate to the attribute of an individual figure? 3. What strategies could you use to recognize the existence of, and visualize components of three dimensional shapes that are not visible from a given viewpoint?

formula
Volume is three dimensional involving, length, width and height (sometimes the base can represent the length or width)

gives the same result as using a volume

- Nets relate to visual representation of three dimensional figures
- Expressions and equations can assist to finding the area of nets by relating the two dimensional figures to three dimensional figures

Acquisition

Students will know	Students will be skilled at
 area base (of a parallelogram) base (of a triangle) compose decompose difference dimension expression height (of a parallelogram) height (of a triangle) parallelogram perpendicular polygon product trapezoid (exclusive) trapezoid (inclusive) 	 Finding the area of parallelograms with whole number side lengths by composing and decomposing Identifying base/height of a parallelogram Generalizing and use the area of a parallelogram Using the formula of a parallelogram accurately to solve problems involving fractional and decimal lengths Finding the area of triangles with whole number side lengths by composing and decomposing into rectangles and parallelograms Identifying base/height of a triangle Generalizing and use the area of a triangle Generalizing and use the area of a triangle Finding area of polygons by composing and decomposing triangles, rectangles and parallelograms Finding the volume of a rectangular prism Solving mathematical real world problems involving volume Identifying and draw nets for three dimensional figures Using nets to find the surface area of three dimensional figures

Stage 2 – Evidence		
Code	Evaluative Criteria	Assessment Evidence
T, M, A	Rubric Criteria:	PERFORMANCE TASK(S):
	Mathematical Concepts:	Goal: Design a new cereal box for a cereal company
	4 - Explanation shows complete understanding of	Role: Employee proposing a solution to the company's manager
	mathematical concepts.	Audience: Manager and classmates
	3 - Explanation shows substantial understanding of	Products: Using a problem solving framework, evidence and transfer knowledge
	mathematical concepts.	to design a new cereal box and use appropriate vocabulary to explain the
	2 - Explanation shows some understanding of	findings
	mathematical concepts.	Standards for Success: scoring rubric including focus on explanation, process
	1 - Explanation shows very limited understanding of	and accuracy of the solution
	mathematical concepts OR is not written.	Differentiation: Consider students of language learners and accommodations by
	Strategy/Procedures:	providing images, as well as a calculator, place value charts or graphic organizer
	4 - Uses an efficient and effective strategy to solve the	to assist with the algorithms and organization
	problem(s).	
	3 - Uses an effective strategy to solve the problem(s).	
	2 - Sometimes uses an effective strategy to solve the	
	problem(s), but does not do it consistently.	
	1 - Rarely uses an effective strategy to solve the	
	problem(s).	
	Mathematical Errors:	
	4 - 90-100% of the steps and solutions have no	
	mathematical errors.	
	3 - Almost all (85-89%) of the steps and solutions have	
	no mathematical errors.	
	2 - Most (75-84%) of the steps and solutions have no	
	mathematical errors.	
	1 - More than 75% of the steps and solutions have	
	mathematical errors.	
	Completion:	
	4 - An problems are completed.	
	3 - 75% of all problems are completed.	
	1 - 25% or less of problems are completed	
	Neatness and Organization:	
	4 - The work is presented in a neat clear organized	
	fashion that is easy to read	

	 3 - The work is presented in a neat and organized fashion that is usually easy to read. 2 - The work is presented in an organized fashion but 	
	may be hard to read at times. 1 - The work appears sloppy and unorganized. It is hard to know what information goes together	
	nard to know what mormation goes together	
		OTHER EVIDENCE:
T, M, A		Embedded Assessment 1: Areas of triangles and parallelograms
T, M, A		Embedded Assessment 2: Volume and area of nest
T, M, A		Common Unit Test: Application of Geometry
M, A		Skill Check: Daily Warm-ups and/or Exit Tickets
M, A		Prompt : How can knowledge of areas and volume help in different carreers?
T, M, A		Homework: Almost daily

	Stage 3 – Learning Plan	
Code	Pre-Assessment	
М	Unit Pre-Assessment	
M	 Teacher monitors for prerequisite understanding(s) and misconception(s) though warm up questions 	
м	Summary of Key Learning Events and Instruction • Students will work independently to complete pre-assessment of	Progress Monitoring Warm uns
	prior knowledge involving the understanding that area is	Classwork
	measured in square units, finding the area of a rectangle, solve	• IXL
	real life problems involving area of squares and rectangle with	Homework
	whole numbers; teacher will plan and facilitate learning to clarify	Exit Tickets
	any prior misconception foundational to the new learning.	 Embedded Assessments
A	Teacher will develop engaging activities where students explore	Mid-Unit Assessment
	the area of parallelograms is the amount of space the shape	
	covers, as well as identify heights as perpendicular to the base.	
	Note: It is crucial to accomplish this through hands-on discovery	
	and visual representations.	
Т, А	Teacher will develop engaging activities where students explore	
	and practice strategies for finding areas of parallelograms	
	including the composing and decomposing of rectangles, as well	
	as formulas.	
Т, А	• Students will continue to discuss and solve problems including the	
	area of parallelograms.	
A	Teacher will develop engaging activities where students explore	

	identical triangles arranged to form rectangles and parallelograms.	
	Students find the relationship of triangles and the relationship to	
	the area of a parallelogram through hands-on activities.	
Т, А	• Teacher will develop engaging activities where students develop	
	strategies to find the area of a triangle. Students recognize the	
	area of a triangle as half of the area of a parallelogram and	
	practice solving area problems in context.	
А	• Teacher will develop engaging activities where students identify	
	and develop strategies for areas of polygons.	
T, M, A	 Assess students' knowledge and application and review 	
	misconceptions.	
Т, А	Teacher will develop engaging activities where students explore	
	with hands on manipulations that cubes with unit fraction edge	
	lengths can be used to find volume. Students develop an	
	understanding of volumes.	
Т, А	• Teacher will develop engaging activities where students develop	
	and practice strategies for solving real world and mathematical	
	problems involving volume.	
Т, А	• Teacher will develop engaging activities where students explore	
	strategies for finding which 2 dimensional shapes make up the net	
	for a given 3 dimensional figure. Students practice with hands-on	
	activities.	
Т, А	• Students continue to develop strategies for finding the surface	
	area of 3 dimensional figures using nets.	
T, M, A	 Assess students' knowledge and application and review 	
	misconceptions.	
Т	 Performance Task: Students will design a new cereal box and use 	
	appropriate vocabulary to explain the findings.	
Т, А	 Assess knowledge and application though the unit CFA and review 	
	misconceptions as needed.	

UNIT 8 - STATISTICS AND DISTRIBUTIONS

Stage 1 Desired Results

ESTABLISHED GOALS CCSS.MATH.CONTENT.SP.A.1:

Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.

CCSS.MATH.CONTENT.SP.A.2:

Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.

CCSS.MATH.CONTENT.SP.A.3:

Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.

CCSS.MATH.CONTENT.SP.B.4:

Display numerical data in plots on a number line, including dot plots, histograms, and box plots.

CCSS.MATH.CONTENT.SP.B.5:

Summarize numerical data sets in relation to their context, such as by: CCSS.MATH.CONTENT.6.SP.B.5.A

Reporting the number of observations.

CCSS.MATH.CONTENT.6.SP.B.5.B

Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.

CCSS.MATH.CONTENT.6.SP.B.5.C

Giving quantitative measures of center (median and/or mean) and variability (interguartile range and/or mean absolute deviation), as well as

Students will be able to independently use their learning to look for and make use of structure to collect and analyze		
information.		
Meaning		
UNDERSTANDINGS	ESSENTIAL QUESTIONS	
Students will understand that	Students will keep considering	

Transfer

• Collected data can be analyzed to answer a auestion • Various statistical methods are used for specific purposes • Data consists of different attributes, counts, and measurements

- Graphs show a distribution shape, whether centered around symmetret or containing unusual traits like clusters, gaps, and outliers
- Different forms of data representation are used including charts, graphs, and statistics

Students will know....

attribute

outlier

quartile

range

•

•

•

•

•

•

•

•

٠

•

Acauisition

Students will be skilled at...

decisions?

attribute box plot categorical data data	 Collecting, analyzing, and interpreting sets of data Describing the shape of data distribution based on its center, spread, and/or variability Creating surveys as a tool to collect data,
dot plot	formulate and answer a statistical question
histogram	Differentiating between categorical and numerical
interquartile range	data
mean	 Describing a set of data using its center (mean,
mean absolute value	median, and mode), spread (range), and overall
measures of variation	shape
median	• Determining appropriate center and variation for
mode	various data sets
numerical data	 Identifying how changes in data affect the mean,

median, and mode of a data set • Compiling and organize data in the form of a table, histogram, dot plot, line plot, ordered-value

1. How does our interpretation of data guide our

3. How can I explain the data distribution?

2. What is the best way to represent collected data?

describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. CCSS.MATH.CONTENT.6.SPB.5.D Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	 sample sample space scale statistics statistical question variability 	 bar graph, or box plot Determining which graph or table is best suited to represent a data set Performing a statistical investigation including the collection, organization, and analysis of the data Communicating a deep understanding of observations, measures of center and spread, graph to represent data collected and overall patterns in a distribution including any outliers impacted the measures of center
--	--	--

Stage 2 – Evidence			
Code	Evaluative Criteria	Assessment Evidence	
T, M, A	Rubric Criteria:	Goal: Use a real life scenario to analyze the statistics and identify which group of	
	Mathematical Concepts:	students performed better.	
	4 - Explanation shows complete understanding of	Role: Analyzing data using statistics	
	mathematical concepts.	Audience: Classmates	
	3 - Explanation shows substantial understanding of	Products: Generate quantitative measures of center (median and/or mean) and	
	mathematical concepts.	variability (interquartile range and/or mean absolute deviation), as well as	
	2 - Explanation shows some understanding of	describing any overall pattern and any striking deviations from the overall	
	mathematical concepts.	pattern with reference to the context in which the data were gathered.	
	1 - Explanation shows very limited understanding of	Standards for Success: scoring rubric including focus on explanation, process	
	mathematical concepts OR is not written.	and accuracy of the solution	
	Strategy/Procedures:	Differentiation: For more advanced students you can challenge them to use	
	4 - Uses an efficient and effective strategy to solve the	estimation in doubling or tripling the scores by using desmos to perform the	
	problem(s).	statistics. Consider students of language learners and accommodations by	
	3 - Uses an effective strategy to solve the problem(s).	providing images, as well as a calculator, place value charts or graphic organizer	
	2 - Sometimes uses an effective strategy to solve the	to assist with the algorithms and organization	
	problem(s), but does not do it consistently.		
	1 - Rarely uses an effective strategy to solve the		
	problem(s).		
	Mathematical Errors:		
	4 - 90-100% of the steps and solutions have no		
	mathematical errors.		
	3 - Almost all (85-89%) of the steps and solutions have		
	no mathematical errors.		
	2 - Most (75-84%) of the steps and solutions have no		
	mathematical errors.		
	1 - More than 75% of the steps and solutions have		
	mathematical errors.		
	Completion:		
	4 - All problems are completed.		
	3 - 75% of all problems are completed.		
	2 - 50% of all problems are completed.		
	1 - 25% of less of problems are completed.		
	A The work is presented in a past clear error incl		
	4 - The work is presented in a neat, clear, organized		
	Tashion that is easy to read.		

	 3 - The work is presented in a neat and organized fashion that is usually easy to read. 2 - The work is presented in an organized fashion but may be hard to read at times. 	
	1 - The work appears sloppy and unorganized. It is hard to know what information goes together	
		OTHER EVIDENCE:
T, M, A		Embedded Assessment 1: Data Organization, Finding the Mean
Т, М , А		Embedded Assessment 2: Variability, Data Analysis
T, M , A		Common Unit Test: Data Collection and Organization, Data Types, Various Data
		Displays, Variability, Data Analysis
		Skill Check: Daily warm-ups
M, A		Prompt : What data should I collect to help answer a statistical question?
т, А Т, М, А		Homework: Almost daily

	Stage 3 – Learning Plan	
Code M M	 Pre-Assessment Unit Pre-Assessment Teacher monitors for prerequisite understanding(s) and misconception(s) though warm up questions 	
М, А	 Summary of Key Learning Events and Instruction Student success at transfer, meaning, and acquisition depends on Teacher checks for prior knowledge using warm-up and questioning activities involving collecting data and creating dot plots. 	Progress Monitoring Warm ups Classwork IXL Homework
М	 Students will work independently to complete pre-assessment involving collecting data and creating dot plots 	 Exit Tickets Embedded Assessments
A	 Teacher will present warm-up questions helping explain and facilitate discussion in discovering what us the study of statistics through examples, statistical versus non statistical questions, categorical and numerical data and developing vocabulary. 	 Mid-Unit Assessment
Т, М	 Students will practice identifying the difference between categorical and numerical data along with calculating the mean, median, and mode. 	
Т, А	 Assess students' knowledge and application and review misconceptions. 	
Т, А	• Teacher will model how change in data changes the distribution of data.	
A	• Teacher will model the different charts, tables, and diagrams used for presenting data.	
Т	• Students will experiment with the different charts, tables, and diagrams to determine which one best fits a particular data set.	
т	 Performance Task: Students will use a real life scenario to analyze the statistics and identify which group of students performed better. 	
M, T, A	• Assess knowledge and application though the unit CFA and review misconceptions as needed.	