Curriculum Management System

PAULSBORO PUBLIC SCHOOLS

GEOMETRY Grade 9-12
MAY 2022
For adoption by all regular education programs
as specified and for adoption or adaptation by all

Special Education Programs in accordance with
Board of Education Policy.

Table of Contents

Paulsboro Public Schools Administration and Board of Education

Paulsboro Public Schools Mission Statement

Definitions

Pacing Guide

Standards/Objectives/Essential Questions/Assessments/Enduring understandings/Resources/Modifications
Benchmark Assessments

Paulsboro Public Schools

Superintendent, Dr. Roy Dawson, III
Board of Education
Mr. Marvin E. Hamilton, President
Mrs. Danielle Scott, Vice President
Mr. Robert Davis

Mrs. Chrystal L. Henderson Mr. Joseph Lisa
*Mrs. Roseanne Lombardo
Ms. Elizabeth Reilly
Mr. Markee Robinson Ms. Tyesha Scott
Mrs. Irma R. Stevenson

* Greenwich Township Board of Education Representative

District Administration
Mrs. Christine Lindenmuth, Director of Curriculum, Instruction \& Assessment
Mrs. Anisah Coppin, Business Administrator/Board Secretary
Ms. Stacey DiMeo, Director of Special Services
Mrs. Tina Morris, Principal, grades Pre-K to 2
Mr. Matthew J. Browne, Principal, grades 3-6
Mr. Paul Morina, Principal, grades 7-12

Paulsboro Public Schools

 Mission StatementThe mission of the Paulsboro School District is to work with students, parents, educators, and community to develop excellence in education while preparing each student to be viable and productive citizens in society. Our goal is to develop the unique potential of the whole student by creating a challenging and diverse learning climate that prepares students for the $21^{\text {st }}$ Century and is rich in tradition and pride.

GEOMETRY PACING CHART (2022-23)

BIG IDEA	\# OF DAYS	Approx. DATES	COMMENTS
1 - Part 1 - Introduction to Geometry and Foundations of Geometry	12 10 plus 2 extra	$9-7$ through 9-24	2 days intro to foundational terms, symbols, drawing, labeling, reading diagrams 2 days for each of 3 lessons, 1 review day, 1 assessment day, 2 re-teach or enrichment days
1 - Part 2 - Reasoning and Proof	14 12 plus 2 extra		2 days for each of 5 lessons, 1 review day, 1 assessment day, 2 re-teach or enrichment days
2 - Parallel and Perpendicular Lines	12 10 plus 2 extra	10-14 through 10-31	2 days for each of 4 lessons, 1 review day, 1 assessment day, 2 re-teach or enrichment days
3 - Transformations	14 12 plus 2 extra	11-1 through 11-22	2 days for each of 5 lessons, 1 review day, 1 assessment day, 2 re-teach or enrichment days
4 - Triangle Congruence	16 14 plus 2 extra	11-28 through 12-19	2 days for each of 6 lessons, 1 review day, 1 assessment day, 2 re-teach or enrichment days
5 - Relationships in Triangles		$12-20$ through 1-18	2 days for each of 5 lessons, 1 review day, 1 assessment day, 2 re-teach or enrichment days
6 - Quadrilaterals and Other Polygons			2 days for each of 6 lessons, 1 review day, 1 assessment day, 2 re-teach or enrichment days
7 - Similarity	14	2-10	2 days for each of 5 lessons, 1 review day, 1 assessment day,

	12 plus 2 extra	through $3-2$	2 re-teach or enrichment days
8- Right Triangles and Trig	14	$3-3$	2 days for each of 5 lessons,
	12 plus	through	1 review day, 1 assessment day,
2 extra	$3-22$	re-teach or enrichment days	

Unit 1 (or MP 1)

Big Idea 1 - Part 1: Foundations of Geometry

Standards for Mathematical Content:

HSG.CO.A. 1
HSG.CO.D. 12
HSG.GPE.B. 6
Standards for Mathematical Practice:
MP.1, MP.2, MP.5, MP. 7
Cross Curricular Standards:

Critical Knowledge and Skills as Concepts

Lesson 1 - undefined terms, defined terms, distance on a line, segment length, angle measure, congruent segments, congruent angles, segment addition, angle addition
Lesson 2 - copy a segment, copy and angle, construct a perpendicular bisector, construct an angle bisector
Lesson 3 - find midpoint of a segment, find distance between points as length of a segment

Science - HS-ETS1-4, HSN-(Q.A.1), (Q.A.3)

Lit - NJSLSA.(R10), (L9-10.6),
RST.9-10.7
CT \& PS - 9.4.12.(CT.1-2), (IML.5), (TL.4)
CS \& DT - 8.1.2.AP.4, 8.2.8ED.3,
8.2.12.ED. 2

MODIFICATIONS:

Advanced Learner:
STEM project
Enrichment
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
Students with Disabilities (or struggling):
Reteach for Understanding
Mathematical Literacy and Vocabulary Additional Practice
Virtual Nerd Tutorial
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
English Language Learners:
Speaking, Reading, Writing suggestions per topic
Mathematical Literacy and Vocabulary Additional Practice
Virtual Nerd Tutorial (enVision Geometry text or SavvasRealize.com)

Students are able to:

- Know definitions of lesson
vocabulary
- Draw, name, label, and identify geometric figures in a diagram
- Use ruler, protractor, and properties of segments and angles to find their measures
- Perform basic constructions
- Use midpoint and distance formulas in the coordinate plane to solve problems

Formative/Summative Assessments

DIAGNOSTIC: Readiness Assessment
FORMATIVE: Daily Warm-up/Exit
Ticket,
Practice and Problem Solving SUMMATIVE:
Topic Assessment, Performance Assessment, Benchmark Assessment, Mid-Course Assessment, End of Course Assessment

Learning Goals as Essential

 Questions:-What information can be learned from 2d and 3d diagrams about relationships of points, lines, and planes? -How are the properties of segments and angles used to determine their measure? -How can a straight edge and compass be used to make basic constructions?
-How are the midpoint and length of a segment on the coordinate plane determined?

Primary \& Supplementary

 ResourcesenVision Geometry 2018 (print textbook)
Savvas Realize Reader (online textbook)
Realize Reader
(savvasrealize.com)
Linkit NJSLS BM Geometry Form A,B,C

Big Idea 1 - Part 2: Geometric Reasoning and Proof

Standards for Mathematical Content:
Critical Knowledge and Skills as Concepts

HSG.CO.C. 9
 HSG.CO.C. 10
 HSG.CO.C. 11
 HSG-CO.C. 9

Standards for Mathematical Practice: MP.1, MP.2, MP.3, MP.4, MP.6, MP.7, MP. 8

Cross Curricular Standards:
Science - HS-ETS1-4, HSN-(Q.A.1), (Q.A.3)

Lit - NJSLSA.(R10), (L9-10.6), RST.9-10.7
CT \& PS - 9.4.12.(CT.1-2), (IML.5), (TL.4)
CS \& DT - 8.1.2.AP.4, 8.2.8ED.3,
8.2.12.ED. 2

MODIFICATIONS:

Advanced Learner:
STEM project
Enrichment
Suggestions per topic (enVision Geometry text or SavvasRealize.com)

Students with Disabilities (or struggling):

Reteach for Understanding
Mathematical Literacy and Vocabulary
Additional Practice
Virtual Nerd Tutorial
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)

Lesson 1 - use inductive reasoning to extend a pattern OR make a conjecture, use a conjecture to make a prediction, find a counterexample to show a conjecture is false, test a conjecture
Lesson 2 - write and evaluate truth of conditional statement, converse, inverse, contrapositive, biconditional
Lesson 3 - use deductive reasoning to prove for the general case, Law of Detachment, Law of Syllogism
Lesson 4 - writing or completing proofs in different formats (two-column, paragraph, flow), vertical angles theorem, congruent complements theorem, congruent supplements theorem, right angles theorem, linear pair theorem
Lesson 5 - steps of indirect proof: assuming a conclusion is false, showing how it leads to a logical impossibility, results in a contradiction, and therefore proves the original conclusion must be true

Students are able to:

- Use inductive reasoning to make conjectures about mathematical relationships
- Write conditional statements, their converse, inverse, contrapositive, biconditional and determine their truth-values
- Use deductive reasoning to draw conclusions
- Use deductive reasoning to prove theorems
- Use indirect reasoning to write proof by contradiction when direct reasoning seems difficult
Formative/Summative
Assessments

Learning Goals as Essential Questions:

- How is inductive reasoning used to recognize mathematical relationships?
- How do "IF, THEN" statements describe mathematical relationships?
- How is deductive reasoning different from inductive reasoning?
- How is deductive reasoning used to prove a theorem?
- What can you conclude when valid reasoning leads to a contradiction?
Primary \& Supplementary
Resources

English Language Learners:

Speaking, Reading, Writing suggestions per topic
Mathematical Literacy and Vocabulary Additional Practice
Virtual Nerd Tutorial (enVision Geometry text or SavvasRealize.com)

DIAGNOSTIC: Readiness Assessment
FORMATIVE: Daily Warm-up/Exit
Ticket,
Practice and Problem Solving
SUMMATIVE:
Topic Assessment, Performance Assessment, Benchmark Assessment, Mid-Course Assessment, End of Course Assessment
enVision Geometry 2018 (print textbook)
Savvas Realize Reader (online textbook)
Realize Reader
(savvasrealize.com)
Linkit NJSLS BM Geometry Form A,B,C

UNIT 1 (or MP1)

Big Idea 2: Parallel and Perpendicular Lines

Standards for Mathematical Content:

HSG.CO.A. 1

HSG.CO.C. 9
HSG.CO.C. 10
HSG.MG.A. 1
HSG.MG.A. 3
HSG.GPE.B. 5

Standards for Mathematical Practice:
 MP.1, MP.2, MP.3, MP.4, MP. 7, MP. 8

Cross Curricular Standards:

```
Science - HS-ETS1-4, HSN-(Q.A.1),
(Q.A.3)
Lit - NJSLSA.(R10), (L9-10.6),
RST.9-10.7
CT & PS - 9.4.12.(CT.1-2), (IML.5), (TL.4)
CS & DT - 8.1.2.AP.4, 8.2.8ED.3,
8.2.12.ED.2
```

Lesson 1 - identify transversal angle pairs, prove transversal angle pairs are congruent or supplementary when lines are parallel, corresponding angles theorem, alternate interior angles theorem, alternate exterior angles theorem, same side interior angles theorem Lesson 2 - prove lines are parallel when transversal angle pairs are congruent or supplementary (corresponding angles converse, alternate interior angles converse, alternate exterior angles converse, same side interior angles converse), transitivity of parallel lines, lines perpendicular to same line are parallel
Lesson 3 - triangle angle sum theorem, triangle exterior angle theorem, only one parallel line theorem, only one perpendicular line theorem
Lesson 4 - parallel lines have equal slopes, vertical lines are parallel, perpendicular lines have opposite reciprocal slopes, graphing and writing equations of parallel and perpendicular lines

Learning Goals as Essential Questions:

MODIFICATIONS:

Advanced Learner:

STEM project

Enrichment

Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
Students with Disabilities (or struggling):
Reteach for Understanding
Mathematical Literacy and Vocabulary
Additional Practice
Virtual Nerd Tutorial
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
English Language Learners:
Speaking, Reading, Writing suggestions per topic
Mathematical Literacy and Vocabulary Additional Practice Virtual Nerd Tutorial (enVision Geometry text or SavvasRealize.com)

- Determine the types of angles created when lines are intersected by a transversal AND determine the measures of the angles created when parallel lines are intersected by a transversal
- Use transversal angle relationships to determine if lines are parallel
- Solve problems using the measures of the interior and exterior angles of a triangle
- Use slope to solve problems about parallel and perpendicular lines

Formative/Summative Assessments

DIAGNOSTIC: Readiness Assessment FORMATIVE: Daily Warm-up/Exit Ticket,
Practice and Problem Solving SUMMATIVE:
Topic Assessment, Performance Assessment, Benchmark Assessment, Mid-Course Assessment, End of Course Assessment

- What angle relationships are created when parallel lines are intersected by a transversal? - What angle relationships can be used to prove two lines are parallel when intersected by a transversal?
- What is true about the interior and exterior angle measures of a triangle?
- How do the slopes of parallel lines compare? How do the slopes of perpendicular lines compare?
Primary \& Supplementary

Resources

enVision Geometry 2018 (print textbook)
Savvas Realize Reader (online textbook)
Realize Reader
(savvasrealize.com)
Linkit NJSLS BM Geometry Form A,B,C

UNIT 2 (or MP 2)

Big Idea 3: Transformations

Standards for Mathematical Content:
HSG.CO.A. 2
HSG.CO.A. 3
HSG.CO.A. 4
HSG.CO.A. 5

Critical Knowledge and Skills as Concepts:

Lesson 1 - reflection across a line of reflection (an axis or any line in the coordinate plane)
Lesson 2 - composition of rigid motions, translation in the coordinate plane

HSG.CO.B. 6
Standards for Mathematical Practice:
MP.1, MP.2, MP.3, MP.4, MP.5, MP.6, MP. 7

Cross Curricular Standards:

Science - HS-ETS1-4, HSN-(Q.A.1),

 (Q.A.3)Lit - NJSLSA.(R10), (L9-10.6), RST.9-10.7
CT \& PS - 9.4.12.(CT.1-2), (IML.5), (TL.4)
CS \& DT - 8.1.2.AP.4, 8.2.8ED.3,
8.2.12.ED. 2

MODIFICATIONS:

Advanced Learner:
STEM project
Enrichment
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
Students with Disabilities (or struggling):
Reteach for Understanding
Mathematical Literacy and Vocabulary
Additional Practice
Virtual Nerd Tutorial
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
English Language Learners:
Speaking, Reading, Writing suggestions per topic
Mathematical Literacy and Vocabulary Additional Practice

Lesson 3 - rotation in the coordinate plane, also rotation as a composition of reflections
Lesson 4 - identify rigid motions as congruence transformations, glide reflection, a composition of rigid motions is a rigid motion, any rigid motion can be a composition of reflections
Lesson 5 - identify transformations for symmetry, identify lines of symmetry and rotational symmetry

Students are able to:

- Draw and describe a reflection of a figure across a line of reflection
- Draw and describe a translation of a figure in the coordinate plane
- Draw and describe the rotation of a figure about a point for a given angle of rotation in the coordinate plan
- Identify rigid motions used to transform 2 dimensional shapes -Identify different types of symmetry in 2 dimensional figures

Formative/Summative
 Assessments
 DIAGNOSTIC: Readiness Assessment
 FORMATIVE: Daily Warm-up/Exit
 Ticket,
 Practice and Problem Solving
 SUMMATIVE:
 Topic Assessment, Performance Assessment, Benchmark Assessment, Mid-Course Assessment, End of Course Assessment

Learning Goals as Essential Questions:

- How are the properties of reflection used to transform a figure?
- What are the properties of a translation?
- What are the properties that identify a rotation?
-How can rigid motions be classified?
-How can you tell whether a figure is symmetric?

Primary \& Supplementary

 ResourcesenVision Geometry 2018 (print textbook)
Savvas Realize Reader (online textbook)
Realize Reader
(savvasrealize.com)
Linkit NJSLS BM Geometry Form A,B,C

Virtual Nerd Tutorial (enVision Geometry text or SavvasRealize.com)

| | UNTT 2 (or MP 2) |
| :--- | :--- | :--- |
| | Big Idea 4: Triangle Congruence |

Students with Disabilities (or struggling):
Reteach for Understanding
Mathematical Literacy and Vocabulary Additional Practice
Virtual Nerd Tutorial
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
English Language Learners:
Speaking, Reading, Writing suggestions per topic
Mathematical Literacy and Vocabulary Additional Practice
Virtual Nerd Tutorial (enVision Geometry text or SavvasRealize.com)
angles to show overlapping triangles are congruent

Formative/Summative Assessments
DIAGNOSTIC: Readiness Assessment
FORMATIVE: Daily Warm-up/Exit Ticket,
Practice and Problem Solving SUMMATIVE:
Topic Assessment, Performance Assessment, Benchmark Assessment, Mid-Course Assessment, End of Course Assessment

- Which theorems can be used to show overlapping triangles are congruent?
Primary \& Supplementary Resources
enVision Geometry 2018 (print textbook)
Savvas Realize Reader (online textbook)
Realize Reader
(savvasrealize.com)
Linkit NJSLS BM Geometry Form A,B,C

UNIT 2 (or MP 2)

Big Idea 5: Segment Relationships in Triangles

Standards for Mathematical Content:
HSG.CO.C. 9
HSG.CO.C. 10
HSG.C.A. 3
HSG.SRT.B. 5

Standards for Mathematical Practice:

MP.1, MP.2, MP.3, MP.4, MP. 7

Cross Curricular Standards:

Science - HS-ETS1-4, HSN-(Q.A.1),
(Q.A.3)

Lit - NJSLSA.(R10), (L9-10.6),
RST.9-10.7
CT \& PS - 9.4.12.(CT.1-2), (IML.5), (TL.4)

Critical Knowledge and Skills as Concepts:

Lesson 1 - perpendicular bisector theorem and its converse, angle bisector theorem and its converse, equidistant points
Lesson 2 - concurrency of perpendicular bisectors, circumcenter, circumscribed triangle, concurrency of angle bisectors, incenter, inscribed triangle
Lesson 3 - concurrency of triangle medians, centroid as the center of mass of a triangle, concurrency of altitudes of a triangle, orthocenter Lesson 4 - the largest angle of a triangle theorem and its converse, triangle inequality theorem, the longest side of a triangle theorem and its converse
Lesson 5 - the hinge theorem and its converse
Students are able to:
Learning Goal as Essential Questions:

CS \& DT - 8.1.2.AP.4, 8.2.8ED.3, 8.2.12.ED. 2

MODIFICATIONS:

Advanced Learner:
STEM project
Enrichment
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
Students with Disabilities (or struggling):
Reteach for Understanding
Mathematical Literacy and Vocabulary
Additional Practice
Virtual Nerd Tutorial
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
English Language Learners:
Speaking, Reading, Writing suggestions per topic
Mathematical Literacy and Vocabulary Additional Practice Virtual Nerd Tutorial (enVision Geometry text or SavvasRealize.com)

- Use properties of perpendicular and angle bisectors to solve problems
- Use triangle bisectors and centers to solve problems
- Use properties of triangle medians and triangle altitudes and their concurrencies to solve problems
- Use theorems to compare the sides and angles of a triangle
- Compare a pair of third sides of two triangles when the other two sides and included angles are congruent
- What is the relationship between a segment and its perpendicular bisector AND between an angle and its bisector?
- What are the properties of perpendicular bisectors and angle bisectors in triangles?
- What are the properties of medians and altitudes of a triangle?
- What are the relationships between the sides and angles of any triangle?
- What is the relationship
between two triangles' third sides when the other two sides and included angles are congruent?
Primary \& Supplementary

Resources

enVision Geometry 2018 (print textbook)
Savvas Realize Reader (online textbook)
Realize Reader
(savvasrealize.com)
Linkit NJSLS BM Geometry Form A,B,C

Big Idea 6: Quadrilaterals and Other Polygons

Standards for Mathematical Content: HSG.SRT.B. 5
 HSG.CO.C. 11

Standards for Mathematical Practice:
 MP.1, MP.3, MP.4, MP.5, MP.6, MP. 7

Cross Curricular Standards:

Science - HS-ETS1-4, HSN-(Q.A.1), (Q.A.3)

Lit - NJSLSA.(R10), (L9-10.6),
RST.9-10.7
CT \& PS - 9.4.12.(CT.1-2), (IML.5), (TL.4)
CS \& DT - 8.1.2.AP.4, 8.2.8ED.3,
8.2.12.ED. 2

MODIFICATIONS:

Advanced Learner:

STEM project

Enrichment

Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)

Students with Disabilities (or struggling):

Reteach for Understanding
Mathematical Literacy and Vocabulary
Additional Practice
Virtual Nerd Tutorial
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)

Critical Knowledge and Skills as Concepts:

Lesson 1 - polygon interior angle sum theorem, polygon exterior angle sum theorem
Lesson 2 - diagonals of a kite are perpendicular, isosceles trapezoid properties, diagonals of an isosceles trapezoid are congruent, trapezoid midsegment theorem
Lesson 3 - opposite sides of a parallelogram are congruent, a parallelogram has supplementary consecutive angles and congruent opposite angles, a parallelogram has diagonals that bisect each other Lesson 4 - quadrilaterals that are parallelograms have: two pairs of congruent opposite sides, angles that are supplementary to both of their consecutive angles, two pairs of congruent opposite angles, two pairs of congruent parallel sides
Lesson 5 - a rhombus has diagonals that are perpendicular bisectors of each other and bisect a pair of opposite angles, a rectangle and a square have congruent diagonals
Lesson 6 - rhombi have perpendicular diagonals, rhombi have diagonals that bisect opposite angles, rectangles have congruent diagonals

Students are able to:

- Find the sum of the measures of a polygon's interior and exterior angles
- Use triangle congruence to understand kites and trapezoids - Use the properties of parallel lines, diagonals, and triangles to investigate parallelograms
- Use properties of sides, angles, and diagonals to identify a parallelogram

Learning Goals as Essential Questions:

- How does the number of sides of a convex polygon relate to sums of the measures of its interior and exterior angles? - How are diagonals and angle measures related in kites and trapezoids?
- What are the relationships of the sides, angles, and diagonals of a parallelogram?
- Which properties determine a quadrilateral is a parallelogram?

Speaking, Reading, Writing suggestions per topic
Mathematical Literacy and Vocabulary Additional Practice Virtual Nerd Tutorial (enVision Geometry text or SavvasRealize.com)

- Use properties of rhombuses, rectangles, and squares to solve problems
- Identify rhombuses, rectangles, and squares by the characteristics of their diagonals
Formative/Summative
Assessments
DIAGNOSTIC: Readiness Assessment
FORMATIVE: Daily Warm-up/Exit
Ticket,
Practice and Problem Solving
SUMMATIVE:
Topic Assessment, Performance
Assessment, Benchmark Assessment,
Mid-Course Assessment, End of Course
Assessment
- What properties of rhombuses, rectangles, and squares differentiate them from other parallelograms? - Which properties of diagonals of parallelograms help you classify them?

Primary \& Supplementary

 ResourcesenVision Geometry 2018 (print textbook)
Savvas Realize Reader (online textbook)
Realize Reader
(savvasrealize.com)
Linkit NJSLS BM Geometry Form A,B,C

UNIT 3 (or MP 3)
Big Idea 7: Similarity

Critical Knowledge and Skills as Concepts:

Lesson 1 - perform dilations figures, analyze dilations, determine the scale factor of dilation, dilate from center at origin or not at origin, use dilation to find length and area
Lesson 2 - describe and graph a composition of a rigid motion and dilation, find similarity transformations, determine similarity
Lesson 3 - use AA triangle similarity theorem, use SSS triangle similarity theorem, use SAS triangle similarity theorem, find length and solve problems using triangle similarity theorems
Lesson 4 - identify similar triangles formed by an altitude, find missing lengths within right triangles, relate altitude to geometric

MP.1, MP.2, MP.3, MP.4, MP.5, MP.7, MP. 8

Cross Curricular Standards:
Science - HS-ETS1-4, HSN-(Q.A.1), (Q.A.3)

Lit - NJSLSA.(R10), (L9-10.6),
RST.9-10.7
CT \& PS - 9.4.12.(CT.1-2), (IML.5), (TL.4)
CS \& DT - 8.1.2.AP.4, 8.2.8ED.3,
8.2.12.ED. 2

MODIFICATIONS:

Advanced Learner:
STEM project
Enrichment
Suggestions per topic (enVision Geometry text or
SavvasRealize.com)

Students with Disabilities (or struggling):

Reteach for Understanding
Mathematical Literacy and Vocabulary
Additional Practice
Virtual Nerd Tutorial
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
English Language Learners:
Speaking, Reading, Writing suggestions per topic
Mathematical Literacy and Vocabulary Additional Practice
mean, relate side lengths to geometric mean, apply geometric mean theorems to find distance and solve problems
Lesson 5 - find segment length using triangle side splitter theorem and its corollary, triangle midsegment theorem, triangle angle bisector theorem

Students are able to:

- Dilate figures and identify
characteristics of dilations
- Determine whether figures are similar
- Use dilation and rigid motion to establish triangle similarity theorems
- Use similarity and the geometric mean to solve problems involving right triangles
- Find the lengths of segments using proportional relationships in triangles resulting from parallel lines

Formative/Summative

Assessments
DIAGNOSTIC: Readiness Assessment
FORMATIVE: Daily Warm-up/Exit
Ticket,
Practice and Problem Solving
SUMMATIVE:

Learning Goals as Essential Questions:

- How does dilation affect the side lengths and angle measures of a figure?
- What is the relationship between a preimage and an image resulting from a similarity transformation? - How can the angles and sides of two triangles be used to determine their similarity? - In a right triangle, what is the relationship between the altitude to the hypotenuse, triangle similarity, and the geometric mean?
- When parallel lines intersect two transversals, what are the relationships between the lengths of the segments formed?
Primary \& Supplementary Resources
enVision Geometry 2018 (print textbook)
Savvas Realize Reader (online textbook)
$\left.\begin{array}{lll}\begin{array}{l}\text { Virtual Nerd Tutorial } \\ \text { (enVision Geometry text or } \\ \text { SavvasRealize.com) }\end{array} & \begin{array}{l}\text { Topic Assessment, Performance } \\ \text { Assessment, Benchmark Assessment, } \\ \text { Mid }\end{array} \\ & \text { Assessment }\end{array} \quad \begin{array}{l}\text { Realize Reader } \\ \text { (savvasrealize.com) }\end{array}\right]$

Students with Disabilities (or struggling):
Reteach for Understanding
Mathematical Literacy and Vocabulary Additional Practice
Virtual Nerd Tutorial
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
English Language Learners:
Speaking, Reading, Writing suggestions per topic
Mathematical Literacy and Vocabulary Additional Practice Virtual Nerd Tutorial (enVision Geometry text or SavvasRealize.com)

- Use the law of cosines to find unknown measures in acute or obtuse triangles
- Use trigonometry to solve real world problems

Formative/Summative
 Assessments

DIAGNOSTIC: Readiness Assessment
FORMATIVE: Daily Warm-up/Exit Ticket,
Practice and Problem Solving SUMMATIVE:
Topic Assessment, Performance Assessment, Benchmark Assessment, Mid-Course Assessment, End of Course Assessment

- How can the law of cosines be used to find side length and angle measure?
- How can trigonometry be used to solve real world mathematical problems?
Primary \& Supplementary Resources
enVision Geometry 2018 (print textbook)
Savvas Realize Reader (online textbook)
Realize Reader
(savvasrealize.com)
Linkit NJSLS BM Geometry Form A,B,C

UNIT 3 (or MP 3)
 Big Idea 9: Coordinate Geometry

Standards for Mathematical Content:	Critical Knowledge and Skills as Concepts:
	Lesson 1 - connect algebra and geometry through coordinates, classify
HSG.GPE.B.4	a triangle and quadrilateral in the coordinate plane, find perimeter and
HSG.GPE.B.7	area of a figure in the coordinate plane
HSG.CO.C.10	Lesson 2 - plan and write a coordinate proof, use coordinate proofs to
HSG.CO.A.1	solve problems
HSG.GPE.A.1	Lesson 3 - derive and write the equation of a circle, determine if a
HSG.GPE.A.2	point is on a circle, graph a circle from its equation, use the equation
Standards for Mathematical Practice:	
MP.1, MP.2, MP.3, MP.4, MP.5, MP.6,	and graph of a circle to solve problems
MP.7, MP.8	Lesson 4 - explore the graph of a parabola, derive and write the
Cross Curricular Standards:	equation of a parabola, apply the equation of a parabola

Science - HS-ETS1-4, HSN-(Q.A.1), (Q.A.3)

Lit - NJSLSA.(R10), (L9-10.6),
RST.9-10.7
CT \& PS - 9.4.12.(CT.1-2), (IML.5), (TL.4)
CS \& DT - 8.1.2.AP.4, 8.2.8ED.3,
8.2.12.ED. 2

MODIFICATIONS:

Advanced Learner:
STEM project
Enrichment
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
Students with Disabilities (or struggling):
Reteach for Understanding
Mathematical Literacy and Vocabulary
Additional Practice
Virtual Nerd Tutorial
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
English Language Learners:
Speaking, Reading, Writing suggestions per topic
Mathematical Literacy and Vocabulary Additional Practice
Virtual Nerd Tutorial (enVision Geometry text or SavvasRealize.com)

Students are able to:	Learning Goals as Essential Questions:
- Use the coordinate plane to analyze geometric figures - Prove geometric theorems using algebra in the coordinate plane - Use the equations and graphs of circles to solve problems - Use the equations and graphs of parabolas to solve problems	- How are properties of geometric figures represented in the coordinate plane? - How can geometric relationships be proven algebraically in the coordinate plane? - How is the equation of a circle determined in the coordinate plane? - How does the geometric description of a parabola relate to its equation?
Formative/Summative Assessments	Primary \& Supplementary Resources
DIAGNOSTIC: Readiness Assessment FORMATIVE: Daily Warm-up/Exit Ticket, Practice and Problem Solving SUMMATIVE: Topic Assessment, Performance Assessment, Benchmark Assessment, Mid-Course Assessment, End of Course Assessment	enVision Geometry 2018 (print textbook) Savvas Realize Reader (online textbook) Realize Reader (savvasrealize.com) Linkit NJSLS BM Geometry Form A,B,C

Standards for Mathematical Content: HSG.CO.A. 1
HSG.CO.D. 13
HSG.C.B. 2
HSG.C.B. 5
HSG.C.A. 2
HSG.C.A.4(+)
Standards for Mathematical Practice: MP.1, MP.2, MP.3, MP.4, MP.5, MP.6, MP. 7

Cross Curricular Standards:

Science - HS-ETS1-4, HSN-(Q.A.1), (Q.A.3)

Lit - NJSLSA.(R10), (L9-10.6),
RST.9-10.7
CT \& PS - 9.4.12.(CT.1-2), (IML.5), (TL.4)
CS \& DT - 8.1.2.AP.4, 8.2.8ED.3,
8.2.12.ED. 2

MODIFICATIONS:

Advanced Learner:

STEM project

Enrichment
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
Students with Disabilities (or struggling):
Reteach for Understanding
Mathematical Literacy and Vocabulary
Additional Practice

Critical Knowledge and Skills as Concepts:

Lesson 1 - relate central angles to arc measures, relate arc length to circumference, relate sector area to circle area, solve problems, involving circles
Lesson 2 - construct and understand lines tangent to a circle, use tangent line perpendicular to a radius theorem and congruent tangent segments from common external point theorem
Lesson 3 - congruent chords (in congruent circles or same circles) will create congruent central angles and congruent intercepted arcs, chords equidistant to the center of a circle are congruent, a diameter perpendicular to a chord bisects the chord, construct a regular hexagon in a circle
Lesson 4 - an inscribed angle is half the measure of its intercepted arc theorem, two inscribed angles intercepting the same arc are congruent corollary
Lesson 5 - intersecting secant line angle measure theorem, intersecting tangent line angle measure theorem, intersecting chord segment length theorem, use segment relationships in circles to solve problems

Students are able to:	Learning Goals as Essential Questions:
- Find arc length and sector area of	- How are arc length and sector
a circle to solve problems	area related to circumference
- Use properties of tangent lines to	
and area of a circle?	
- Relate problems length of a chord to its	- How is a tangent line related to
a radius of a circle at its point of	
central angle and the arc it	tangency?
intercepts	- How are chords related to their
- Use the relationships between	central angles and intercepted
angles and arcs in circles to find	
arcs?	
their measures	- How is the measure of an
- Use angle measures and segment	
lengths formed by intersecting lines	
ind circles to solve problems	intercepted arc?

Virtual Nerd Tutorial
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
English Language Learners:
Speaking, Reading, Writing suggestions per topic
Mathematical Literacy and Vocabulary Additional Practice
Virtual Nerd Tutorial
(enVision Geometry text or
SavvasRealize.com)

	- How are the measures of angles, arcs, and segments made by intersecting secant lines related?
Formative/Summative	Primary \& Supplementary Resources
Assessments	enVision Geometry 2018 (print
FIAGNOSTIC: Readiness Assessment	
textbook)	
Ticket,	Savvas Realize Reader (online
Practice and Problem Solving	textbook)
SUMMATIVE:	Realize Reader
Topic Assessment, Performance	(savvasrealize.com)
Assessment, Benchmark Assessment,	Linkit NJSLS BM Geometry
Mid-Course Assessment, End of Course	Linkit
Assessment	Form A,B,C

Big Idea 11: 2 and 3 Dimensional Models		

Science - HS-ETS1-4, HSN-(Q.A.1),
(Q.A.3)
Lit - NJSLSA.(R10), (L9-10.6),
RST.9-10.7
CT \& PS - 9.4.12.(CT.1-2), (IML.5), (TL.4)
CS \& DT - 8.1.2.AP.4, 8.2.8ED.3,
8.2.12.ED.2
MODIFICATIONS:
Advanced Learner:
STEM project
Enrichment
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
Students with Disabilities (or struggling):
Reteach for Understanding
Mathematical Literacy and Vocabulary
Additional Practice
Virtual Nerd Tutorial
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
English Language Learners:
Speaking, Reading, Writing suggestions
per topic
Mathematical Literacy and Vocabulary
Additional Practice
Virtual Nerd Tutorial
(enVision Geometry text or
SavvasRealize.com)

Lit - NJSLSA.(R10), (L9-10.6),
RST.9-10.7
CT \& PS - 9.4.12.(CT.1-2), (IML.5), (TL.4)
CS \& DT - 8.1.2.AP.4, 8.2.8ED.3,
8.2.12.ED. 2

MODIFICATIONS:

STEM project

Enrichment
uggestions per topic
SavvasRealize.com)
Students with Disabilities (or struggling):
Reteach for Understanding
Mathematical Literacy and Vocabulary
Additional Practice
Virtual Nerd Tutorial
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)

Speaking, Reading, Writing suggestions per topic
Mathematical Literacy and Vocabulary Additional Practice
Artual Nerd Tutorial

SavvasRealize.com)

```
HSS.CP.A.1
HSS.CP.A. }
HSS.CP.A. }
HSS.CP.A. }
HSS.CP.B. }
HSS.CP.B.7
HSS.CP.B.9(+)
HSS.MD.A.1(+)
HSS.MD.A.2
HSS.MD.A.3(+)
HSS.MD.B.5.A
HSS.MD.B.5.B
HSS.MD.B.6(+)
HSS.MD.B.7(+)
Standards for Mathematical Practice:
MP.1, MP.2, MP.3, MP.4, MP.6, MP.7
Cross Curricular Standards:
Science - HS-ETS1-4, HSN-(Q.A.1),
(Q.A.3)
Lit - NJSLSA.(R10), (L9-10.6),
RST.9-10.7
CT & PS - 9.4.12.(CT.1-2), (IML.5), (TL.4)
CS & DT - 8.1.2.AP.4, 8.2.8ED.3,
8.2.12.ED.2
MODIFICATIONS:
Advanced Learner:
STEM project
Enrichment
Suggestions per topic
(enVision Geometry text or
SavvasRealize.com)
Students with Disabilities (or struggling):
Reteach for Understanding
```

```
Standards for Mathematical Practice:
```

Lesson 1 - probability of mutually exclusive events, probability of non-mutually exclusive events, find independent events Lesson 2 - conditional probability and independent events, apply conditional probability formula, use conditional probability to make a decision
Lesson 3 - use fundamental counting principle, find number of permutations, find number of combinations, use permutations and combinations to find probabilities
Lesson 4 - develop a theoretical probability distribution, develop an experimental probability, explore binomial experiments, use binomial probability formula
Lesson 5 - evaluate and apply expected value, find expected payoff, use expected value to evaluate strategies, use binomial probability to find expected value
Lesson 6 - use probability to make fair decisions, determine whether a decision is fair or unfair, make a decision based on expected value, use binomial distributions to make decisions

Students are able to:	Learning Goals as Essential Questions:
- Use relationships between events	- How does describing events as
to find probability	mutually exclusive or
- Find the probability of an event	
given that another event has	independent affect how probability is found? occurred
- Use permutations and	- How are conditional
combinations to find number of the	probability and independence related in experiments? outcomes in a probability
experiment	- How are permutations and
- Define probability distributions to	combinations useful when
represent experiments and solve	- What does a probilities?
problems	distribution tell you about an
- Calculate, interpret, and apply	experiment?
expected value	
- Use probability to make decisions	

Mathematical Literacy and Vocabulary Additional Practice Virtual Nerd Tutorial Suggestions per topic (enVision Geometry text or		- What does expected value tell you about situations involving probability? - How can you use probability to make decisions?
SavvasRealize.com) English Language Learners:	Formative/Summative Assessments	Primary \& Supplementary Resources
Speaking, Reading, Writing suggestions per topic Mathematical Literacy and Vocabulary Additional Practice Virtual Nerd Tutorial (enVision Geometry text or SavvasRealize.com)	DIAGNOSTIC: Readiness Assessment FORMATIVE: Daily Warm-up/Exit Ticket, Practice and Problem Solving SUMMATIVE: Topic Assessment, Performance Assessment, Benchmark Assessment, Mid-Course Assessment, End of Course Assessment	enVision Geometry 2018 (print textbook) Savvas Realize Reader (online textbook) Realize Reader (savvasrealize.com) Linkit NJSLS BM Geometry Form A,B,C

