WEEK OF 3/10-14/2025

C	OURSE: 8th Grade Genera	l Science	TEACHER: Turr	ner PE	PERIODS: 1, 3, 4, 5, 6		
	OBJECTIVES	ACTIVITIES	MATERIALS	HOMEWORK	ASSESSMENT	STANDARDS	
MON	Describe electric and magnetic forces.	GEN BR: Review questions Students will: GEN: New Table of Content, New Vocabulary, and New Title page	McGraw-Hill Physical Science textbook Bill Nye video & video sheet Energy Circuit	Finish any unfinished classwork	Participation	 ACOS: 13. Create & analyze graphical displays of data to illustrate the relationships of kinetic energy to the mass and speed of an object. 14. Use models to construct an explanation of how a system of objects may contain varying types and amounts of potential energy. 15. Analyze & interpret data from experiments to determine how various factors affect energy transfer as measured by temperature. 16. Apply the law of conservation energy to develop arguments supporting the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. 	
T U E S	Identify the parts of a circuit. Differentiate between an open and a closed circuit. Demonstrate knowledge of energy.	GEN BR: Electricity questions Students will: GEN: Complete Electricity & Magnetism Guided notes using PPT; complete Open & Closed Circuits worksheet.	Electricity & Magnetism Guided notes & PPT Open & Closed Circuits Unit 6 Test	Finish any unfinished classwork	Participation; test	 ACOS: 13. Create & analyze graphical displays of data to illustrate the relationships of kinetic energy to the mass and speed of an object. 14. Use models to construct an explanation of how a system of objects may contain varying types and amounts of potential energy. 15. Analyze & interpret data from experiments to 	

						determine how various factors affect energy transfer as measured by temperature. 16. Apply the law of conservation energy to develop arguments supporting the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
WED	Identify the parts of a circuit. Differentiate between an open and a closed circuit. Differentiate between a series and a parallel circuit. Demonstrate organizational skills.	GEN BR: Circuit questions Students will: GEN: Complete Series & Parallel Circuit notes; complete Series & Parallel Bulb Sort; complete Series & Parallel Worksheet. t.	Series & Parallel Circuit notes Series & Parallel Bulb Sort Series & Parallel Worksheet Unit 6 NB TEst	Finish any unfinished classwork	Participation; NB test	 ACOS: 13. Create & analyze graphical displays of data to illustrate the relationships of kinetic energy to the mass and speed of an object. 14. Use models to construct an explanation of how a system of objects may contain varying types and amounts of potential energy. 15. Analyze & interpret data from experiments to determine how various factors affect energy transfer as measured by temperature. 16. Apply the law of conservation energy to develop arguments supporting the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
T H U R S	Calculate Ohm's Law. Describe electric and magnetic forces. Identify the parts of a circuit. Differentiate between an open and a closed circuit. Differentiate between a series and a parallel circuit.	GEN BR: Electricity questions Students will: GEN: Discuss Ohm's Law and how to use the equation for Ohm's Law; complete Ohm's Law sheet;	Ohm's Law sheet Will it Light? Activity Electricity Article & questions Bill Nye - Electricity video & video sheet Electric Current	Finish any unfinished classwork	Participation	 ACOS: 13. Create & analyze graphical displays of data to illustrate the relationships of kinetic energy to the mass and speed of an object. 14. Use models to construct an explanation of how a system of objects may contain varying types and amounts of potential

		complete Will it Light? Activity; complete Electricity article & questions. ADV: Watch Bill Nye - Electricity video & answer video question sheet; complete Electric Current notes; complete Open & Closed	notes Open & Closed Circuits worksheet Series & Parallel Circuit notes			 energy. 15. Analyze & interpret data from experiments to determine how various factors affect energy transfer as measured by temperature. 16. Apply the law of conservation energy to develop arguments supporting the claim that when the kinetic energy of an object changes,
		Circuits worksheet; complete Series & Parallel Circuit notes.				energy is transferred to or from the object.
FRI	Calculate Ohm's Law. Describe electromagnetism and how to make an electromagnet. Describe electric and magnetic forces. Identify the parts of a circuit. Differentiate between an open and a closed circuit. Differentiate between a series and a parallel circuit.	GEN BR: Ohm's Law questions Students will: GEN: Watch Magnetism video; complete Whose Field Line is it Anyway? Lab; complete Magnetism Article & questions.	Magnetism video Whose Field Line is it Anyway? Lab Magnetism Article & questions Series & Parallel Bulb Sort Series & Parallel worksheet Ohm's Law Sheet Will it Light? activity	Finish any unfinished classwork	Participation	 ACOS: 13. Create & analyze graphical displays of data to illustrate the relationships of kinetic energy to the mass and speed of an object. 14. Use models to construct an explanation of how a system of objects may contain varying types and amounts of potential energy. 15. Analyze & interpret data from experiments to determine how various factors affect energy transfer as measured by temperature. 16. Apply the law of conservation energy to develop arguments supporting the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.