Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	3rd	1	8 weeks

Unit Title: Animal Development and Survival

OVERVIEW OF UNIT:

In this unit of study, students develop an understanding of the similarities and differences in organisms' life cycles. In addition, students use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. The crosscutting concepts of patterns and cause and effect are called out as organizing concepts for these disciplinary core ideas. Students demonstrate grade-appropriate proficiency in developing and using models and constructing explanations, and designing solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Big Ideas

- Science findings are based on recognizing patterns.
- Similarities and differences in patterns can be used to sort and classify natural phenomena.
- Patterns of change can be used to make predictions.
- Reproduction is essential to the continued existence of every kind of organism. Plants and animals have unique and diverse life cycles
- Cause-and-effect relationships are routinely identified and used to explain change.
- Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing.

Essential Questions

- Do all living things have the same life cycle?
- How can living in a group help animals survive?

Objectives

- Students will be able to identify commonalities and differences between plant and animal life cycles.
- Students will be able to identify plant and animal behaviors and adaptations that help them survive.
- Students will ask questions that can be investigated based on patterns such as cause and effect relationships.
- Students will define a simple problem that can be solved through the development of a new or improved object or tool.
- Students will develop models to describe phenomena.

Assessment

Students who understand the concepts are able to:

- 2
- Sort and organisms (inherited traits) using similarities and differences in patterns.
- Make predictions using patterns of change.
- Develop models to describe phenomena.
- Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. (I.e., Changes organisms go through during their life form a pattern.) Identify cause-and-effect relationships in order to explain change.
- Use evidence (e.g., observations, patterns) to construct an explanation.
- Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. Examples of cause-and-effect relationships could include: Plants that have larger thorns than other plants may be less likely to be eaten by predators. Animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.

Formative Assessment:

- STEMscopes activities and responses
- Science station activities
- Online quizzes and activities

Summative Assessment:

• Research and poster presentation

Benchmark:

• Accessing Prior Knowledge activity

Alternative:

- Modified guizzes and activities
- Performance assessments

Key Vocabulary

Cycle, organism, survival, defense, function, group, existence, organism, birth, death, growth, development, reproduction

Resources & Materials

- Assessment for the Next Generation Science Standards
- NGSS Crosscutting Concepts: Patterns
- NGSS Crosscutting Concepts: Structure and Function
- NGSS Core Ideas: Heredity: Inheritance and Variation of Traits
- STEMscopes

Technology Infusion

Teacher Technology:

- Google Classroom
- STEMscopes

• Promethean Board

Student Technology:

- Google Classroom
- STEMscopes
- Chromebooks
- iPads

Activities:

- Google Classroom
- STEMscopes videos and activities
- Chromebooks
- iPads

Standard	Standard Description
8.1.5.DA.1	Collect, organize, and display data in order to highlight relationships or support a
	claim.
8.1.5.DA.5	Propose cause and effect relationships, predict outcomes, or communicate ideas using
	data.

Interdisciplinary Integration

Activities:

• Students will read informational text as they research the life cycle of a chosen animal. They will compile this research to create a poster. Using these posters, students will compare and contrast animal life cycles and complete a graphic organizer of their similarities and differences.

Resources:

- Teacher Vision Cross-Curricular Theme Map https://www.teachervision.com/teaching-methods/curriculum-planning/7167.html
- Engineering Go For It! http://egfi-k12.org/
- US Department of Education STEM http://www.ed.gov/stem
- Intel STEM Resource http://www.intel.com/content/www/us/en/education/k12/stem.html
- NASA STEM http://www.nasa.gov/audience/foreducators/expeditions/stem/#.VYrO2flViko
- PBS STEM http://www.pbs.org/teachers/stem/#content
- STEM Works http://stem-works.com/activities
- What Every Educator Should Know About Using Google by Shell Education
- Promoting Literacy in all Subjects by Glencoe -http://www.glencoe.com/sec/teachingtoday/subject/promoting_literacy.phtml
- International Literacy Association Read Write Think http://www.readwritethink.org/

Standard	Standard Description
NJSLS-ELA WR	Conduct short as well as more sustained research projects, utilizing an inquiry-based
	research process, based on focused questions, demonstrating understanding of the
	subject under investigation.

NJSLS-ELA SE	Gather relevant information and evidence from multiple sources to support analysis,
	reflection, and research, while assessing the credibility and accuracy of each source,
	and integrating the information while avoiding plagiarism.
NJSLS-ELA	Write informative/explanatory texts to examine a topic and convey ideas and
W.IW.3.2	information clearly.
NJSLS-ELA	Compare and contrast the elements of informational texts regarding the most
RI.CT.3.8	important points and key details presented in two texts on the same topic.
NJSLS-ELA	Use multimedia to demonstrate fluid reading at an understandable pace; add visual
SL.UM.3.5	displays when appropriate to emphasize or enhance certain facts or details.

21st Century Life Skills Standards		
Activities:		
Students will w	atch STEMscopes videos of a Zoo Education Production Specialist and discuss the	
video using the	guiding questions.	
Standard	Student Learning Objectives	
9.2.5.CAP.3	Identify qualifications needed to pursue traditional and non-traditional careers and	
	occupations.	
9.4.5.CI.1	Use appropriate communication technologies to collaborate with individuals with	
	diverse perspectives about a local and/or global climate change issue and deliberate	
	about possible solutions (e.g., W.4.6, 3.MD.B.3,7.1.NM.IPERS.6).	
9.4.5.CI.3	Participate in a brainstorming session with individuals with diverse perspectives to	
	expand one's thinking about a topic of curiosity (e.g., 8.2.5.ED.2, 1.5.5.CR1a).	

Careers			
Activities:			
• Students will use	• Students will use text and media sources to research and present on the life cycle of a plant or animal.		
Practice	Description		
Demonstrate creativity and innovation.	Students regularly think of ideas that solve problems in new and different ways, and they contribute those ideas in a useful and productive manner to improve their organization. They can consider unconventional ideas and suggestions as solutions to issues, tasks or problems, and they discern which ideas and suggestions will add greatest value. They seek new methods, practices, and ideas from a variety of sources and seek to apply those ideas to their own workplace. They take action on		
Utilize critical thinking to make sense of problems and persevere in solving them.	their ideas and understand how to bring innovation to an organization. Students readily recognize problems in the workplace, understand the nature of the problem, and devise effective plans to solve the problem. They are aware of the problem and carefully consider the options to solve the problem. Once a solution is agreed upon, they follow through to ensure the problem is solved, whether through this when they occur and take action quickly to address the problem; they thoughtfully investigate the root cause of the problem prior to introducing solutions. Their own actions or the actions of others.		
Work productively in teams while using	Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and		

Version Update: July 2025 5

cultural/global	positive interaction. They find ways to increase the engagement and contribution of
competence.	all team members. They plan and facilitate effective team meetings.

Standards			
Standard #	Standard Description	Student Learning Objective	Clarification Statement
3-LS1-1	Molecules to Organisms:	Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death	Changes organisms go through during their life form a pattern.] [Assessment Boundary: Assessment of plant life cycles is limited to those of flowering
			plants. Assessment does not include details of human reproduction
3-LS4-2	Biological Evolution: Unity and Diversity	Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.	Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.
3-5-ETS1-1	Engineering Design	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.	
3-5-ETS1-2	Engineering Design	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.	
3-5-ETS1-3	Engineering Design	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.	

Version Update: July 2025 6

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied

Califon Public School

Version Update: July 2025

Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	3rd	2	8 weeks

Unit Title: Environments and the Traits of Organisms

OVERVIEW OF UNIT:

In this unit of study, students acquire an understanding that organisms have different inherited traits and that the environment can also affect the traits that an organism develops. The crosscutting concepts of patterns and cause and effect are called out as organizing concepts for these disciplinary core ideas. Students are expected to demonstrate grade-appropriate proficiency in analyzing and interpreting data, constructing explanations, and designing solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Big Ideas

- Similarities and differences in patterns can be used to sort and classify natural phenomena (e.g., inherited traits that occur naturally).
- Many characteristics of organisms are inherited from their parents.
- Different organisms vary in how they look and function because they have different inherited information.
- Cause-and-effect relationships are routinely identified and used to explain change.
- Other characteristics, which can range from diet to learning, result from individuals' interaction with the environment.
- Many characteristics involve both inheritance and environment.
- The environment also affects the traits that an organism develops.

Essential Questions

- What kinds of traits are passed on from parent to offspring?
- What environmental factors might influence the traits of a specific organism?
- What kinds of traits are passed on from parent to offspring?
- What environmental factors might influence the traits of a specific organism?

Objectives

- Students will be able to identify and differentiate between inherited and environmental traits.
- Students will be able to identify environmental factors that might influence the traits of a specific organism.
- Students will analyze and interpret data to make sense of phenomena using logical reasoning.

Assessment

Students who understand the concepts are able to:

- Sort and classify natural phenomena using similarities and differences. (Clarification: Patterns are the similarities and differences in traits shared between offspring and their parents or among siblings, with an emphasis on organisms other than humans).
- Analyze and interpret data to make sense of phenomena using logical reasoning.
- Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.
- Identify cause-and-effect relationships in order to explain change.
- Use evidence (e.g., observations, patterns) to support an explanation.
- Use evidence to support the explanation that traits can be influenced by the environment.

Formative Assessment:

- STEMscopes activities and responses
- Science station activities
- Online quizzes and activities

Summative Assessment:

• Research and poster presentation

Benchmark:

Accessing Prior Knowledge activity

Alternative:

- Modified quizzes and activities
- Performance assessments

Key Vocabulary

Inherit, trait, organism, environmental factor, characteristic, evidence, parent, offspring, variations, learned behavior, diet, explanation, interactions

Resources & Materials

- NSTA Web Seminar: Teaching NGSS in Elementary School—Third Grade
- Teaching NGSS in K-5: Constructing Explanations from Evidence
- NGSS Core Ideas: Heredity: Inheritance and Variation of Traits
- STEMscopes

Technology Infusion

Teacher Technology:

- Google Classroom
- STEMscopes
- Promethean Board

Student Technology:

• Google Classroom

- STEMscopes
- Chromebooks
- iPads

Activities:

- Google Classroom
- STEMscopes videos and activities
- Chromebooks
- iPads

Standard	Standard Description
8.1.5.DA.1	Collect, organize, and display data in order to highlight relationships or support a claim.
8.1.5.DA.5	Propose cause and effect relationships, predict outcomes, or communicate ideas using data.

Interdisciplinary Integration

Activities:

• Students will survey students about inherited and learned behaviors and graph the data.

Resources:

- Teacher Vision Cross-Curricular Theme Map https://www.teachervision.com/teaching-methods/curriculum-planning/7167.html
- Engineering Go For It! http://egfi-k12.org/
- US Department of Education STEM http://www.ed.gov/stem
- Intel STEM Resource http://www.intel.com/content/www/us/en/education/k12/stem.html
- NASA STEM http://www.nasa.gov/audience/foreducators/expeditions/stem/#.VYrO2flViko
- PBS STEM http://www.pbs.org/teachers/stem/#content
- STEM Works http://stem-works.com/activities
- What Every Educator Should Know About Using Google by Shell Education
- Promoting Literacy in all Subjects by Glencoe http://www.glencoe.com/sec/teachingtoday/subject/promoting_literacy.phtml
- International Literacy Association Read Write Think http://www.readwritethink.org/

Standard	Standard Description	
3.DL.B.3	Draw a scaled picture graph and a scaled bar graph to represent a data set with	
	several categories. Solve one- and two-step "how many more" and "how many less"	
	problems using information presented in scaled bar graphs. For example, draw a bar	
	graph in which each square in the bar graph might represent 5 pets.	
3.DL.B.4	Generate measurement data by measuring lengths using rulers marked with halves	
	and fourths of an inch. Show the data by making a line plot, where the horizontal	
	scale is marked off in appropriate units—whole numbers, halves, or quarters.	
NJSLS-ELA	Recount in oral and written form the key details from a multi-paragraph	
RI.CI.3.2	informational text and explain how they support the main idea.	

NJSLS-ELA	Describe the relationship between a series of historical events, scientific ideas or	
RI.IT.3.3	concepts, or steps in technical procedures in a text, using language that pertains to	
	time, sequence, and cause/effect.	
NJSLS-ELA	Write informative/explanatory texts to examine a topic and convey ideas and	
W.IW.3.2	information clearly.	
NJSLS-ELA	Report on a topic or text, tell a story, or recount an experience with appropriate facts	
SL.PI.3.4	and relevant, descriptive details, speaking clearly at an understandable pace.	

21st Century Life Skills Standards					
Activities:	Activities:				
Students will w	vatch career connections video on farming and discuss key points.				
Standard	ard Student Learning Objectives				
9.2.5.CAP.3	Identify qualifications needed to pursue traditional and non-traditional careers and occupations.				
9.4.5.CI.1	Use appropriate communication technologies to collaborate with individuals with diverse perspectives about a local and/or global climate change issue and deliberate about possible solutions (e.g., W.4.6, 3.MD.B.3,7.1.NM.IPERS.6).				
9.4.5.CI.3	Participate in a brainstorming session with individuals with diverse perspectives to expand one's thinking about a topic of curiosity (e.g., 8.2.5.ED.2, 1.5.5.CR1a).				

Careers				
Activities:				
 Students will discuss the environmental impacts humans can have on the environment. 				
Practice	Description			
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways,			
and innovation.	and they contribute those ideas in a useful and productive manner to improve their			
	organization. They can consider unconventional ideas and suggestions as solutions			
	to issues, tasks or problems, and they discern which ideas and suggestions will add			
	greatest value. They seek new methods, practices, and ideas from a variety of			
	sources and seek to apply those ideas to their own workplace. They take action on			
	their ideas and understand how to bring innovation to an organization.			
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the			
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the			
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is			
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through			
	this when they occur and take action quickly to address the problem; they			
	thoughtfully investigate the root cause of the problem prior to introducing			
	solutions. Their own actions or the actions of others.			
Work productively in	Students positively contribute to every team, whether formal or informal. They			
teams while using	apply an awareness of cultural difference to avoid barriers to productive and			
cultural/global	positive interaction. They find ways to increase the engagement and contribution of			
competence.	all team members. They plan and facilitate effective team meetings.			

	Standards				
Standard #	Standard Description	Student Learning Objective	Clarification Statement		
3-LS3-1	Heredity: Inheritance and Variation of Traits	Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.	Patterns are the similarities and differences in traits shared between offspring and their parents, or among siblings. Emphasis is on organisms other than humans.] [Assessment Boundary: Assessment does not include genetic mechanisms of		
			inheritance and prediction of traits. Assessment is limited to non-human examples.		
3-LS3-2	Heredity: Inheritance and Variation of Traits	Use evidence to support the explanation that traits can be influenced by the environment.	Examples of the environment affecting a trait could include normally tall plants grown with insufficient water are stunted; and, a pet dog that is given too much food and little exercise may become overweight.		
3-5-ETS1-1	Engineering Design	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.	may occome over weight.		
3-5-ETS1-2	Engineering Design	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.			
3-5-ETS1-3	Engineering Design	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.			

Differentiation
Students with 504 plans
Preferential seating

- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	3rd	3	8 weeks

Unit Title: Organisms Change Over Time

OVERVIEW OF UNIT:

In this unit of study, students develop an understanding of the idea that when the environment changes, some organisms survive and reproduce, some move to new locations, some move into the transformed environment, and some die. The crosscutting concepts of cause and effect and the interdependence of science, engineering, and technology are called out as organizing concepts for these disciplinary core ideas. Students demonstrate grade-appropriate proficiency in engaging in argument from evidence. Students are also expected to use this practice to demonstrate understanding of the core ideas.

Big Ideas

- Cause-and-effect relationships are routinely identified and used to explain change.
- Knowledge of relevant scientific concepts and research findings is important in engineering.
- For any particular environment, some kinds of organisms survive well, some survive less well, and some cannot survive at all.
- Organisms and their habitat make up a system in which the parts depend on each other.
- Being part of a group helps animals obtain food, defend themselves, and cope with changes. Groups may serve different functions and vary dramatically in size
- Cause and effect relationships are routinely identified and used to explain change
- When the environment changes in ways that affect a place's physical characteristics, temperature, or availability of resources, some organisms survive and reproduce, others move to new locations, yet others move into the transformed environment, and some die.
- Populations live in a variety of habitats and change in those habitats affects the organisms living there.
- Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing.

Essential Questions

- Why have some species gone extinct?
- Why are fossils sometimes found in places that don't make sense?
- In a particular habitat, why do some organisms survive well, some survive less well, and some not survive at all?

Objectives

- Students will be able to identify reasons why species have gone extinct.
- Students will make inferences about the past geography of a region.

14

- Students will describe the benefits of variations within a species?
- Students will construct an argument with evidence, data, and/or a model.
- Students will make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem.

Assessment

Students who understand the concepts are able to:

- Identify cause-and-effect relationships in order to explain change.
- Construct an argument with evidence.
- Construct an argument with evidence (e.g., needs and characteristics of the organisms and habitats involved) that in a particular habitat, some organisms can survive well, some survive less well, and some cannot survive at all.

Formative Assessment:

- STEMscopes activities and responses
- Science station activities
- Online quizzes and activities

Summative Assessment:

• Research and poster presentation

Benchmark:

• Accessing Prior Knowledge activity

Alternative:

- Modified quizzes and activities
- Performance assessments

Key Vocabulary

Organism, environment, adapt, adaptation, trait

Resources & Materials

- NGSS Crosscutting Concepts: Stability and Change
- NGSS Core Ideas: Ecosystems: Interactions, Energy, and Dynamics
- NGSS Core Ideas: Biological Evolution: Unity and Diversity

Technology Infusion

Teacher Technology:

- Google Classroom
- STEMscopes
- Promethean Board

Student Technology:

- Google Classroom
- STEMscopes
- Chromebooks
- iPads

Activities:

- Google Classroom
- STEMscopes videos and activities
- Chromebooks
- iPads

Standard	Standard Description		
8.1.5.DA.1	Collect, organize, and display data in order to highlight relationships or support a		
	claim.		
8.1.5.DA.5	Propose cause and effect relationships, predict outcomes, or communicate ideas using		
	data.		

Interdisciplinary Integration

Activities:

• Student will complete close reading of scientific texts in order to better understand the content.

Resources:

- Teacher Vision Cross-Curricular Theme Map https://www.teachervision.com/teaching-methods/curriculum-planning/7167.html
- Engineering Go For It! http://egfi-k12.org/
- US Department of Education STEM http://www.ed.gov/stem
- Intel STEM Resource http://www.intel.com/content/www/us/en/education/k12/stem.html
- NASA STEM http://www.nasa.gov/audience/foreducators/expeditions/stem/#.VYrO2flViko
- PBS STEM http://www.pbs.org/teachers/stem/#content
- STEM Works http://stem-works.com/activities
- What Every Educator Should Know About Using Google by Shell Education
- Promoting Literacy in all Subjects by Glencoe http://www.glencoe.com/sec/teachingtoday/subject/promoting_literacy.phtml
- International Literacy Association Read Write Think http://www.readwritethink.org/

Standard	Standard Description		
NJSLS-ELA	Read with sufficient accuracy and fluency to support comprehension.		
L.RF.3.4			
NJSLS-ELA	Ask and answer questions and make relevant connections to demonstrate		
RI.CR.3.1	understanding of an informational text, referring explicitly to textual evidence as the		
	basis for the answers.		
NJSLS-ELA	Describe the relationship between a series of historical events, scientific ideas or		
RI.IT.3.3	concepts, or steps in technical procedures in a text, using language that pertains to		
	time, sequence, and cause/effect.		

competence.

NJSLS-ELA	Write opinion texts to present an idea with reasons and information.
W.AW.3.1	
NJSLS-ELA	Write opinion texts to present an idea with reasons and information
W.AW.3.1	
Mathematical	Reason abstractly and quantitatively.
Practice #2	

21st Century Life Skills Standards				
Activities:				
Students will	watch the content connections video about archaeologists and discuss the key points.			
Standard	Standard Student Learning Objectives			
9.2.5.CAP.3	Identify qualifications needed to pursue traditional and non-traditional careers and			
	occupations.			
9.4.5.CI.1	Use appropriate communication technologies to collaborate with individuals with			
	diverse perspectives about a local and/or global climate change issue and deliberate			
	about possible solutions (e.g., W.4.6, 3.MD.B.3,7.1.NM.IPERS.6).			
9.4.5.CI.3	Participate in a brainstorming session with individuals with diverse perspectives to			
	expand one's thinking about a topic of curiosity (e.g., 8.2.5.ED.2, 1.5.5.CR1a).			

Careers

Activities: • Students will work in teams to research an endangered species and create a PSA to help protect the species. **Practice Description** Demonstrate creativity Students regularly think of ideas that solve problems in new and different ways, and innovation. and they contribute those ideas in a useful and productive manner to improve their organization. They can consider unconventional ideas and suggestions as solutions to issues, tasks or problems, and they discern which ideas and suggestions will add greatest value. They seek new methods, practices, and ideas from a variety of sources and seek to apply those ideas to their own workplace. They take action on their ideas and understand how to bring innovation to an organization. Utilize critical thinking Students readily recognize problems in the workplace, understand the nature of the problem, and devise effective plans to solve the problem. They are aware of the to make sense of problem and carefully consider the options to solve the problem. Once a solution is problems and persevere in solving them. agreed upon, they follow through to ensure the problem is solved, whether through this when they occur and take action quickly to address the problem; they thoughtfully investigate the root cause of the problem prior to introducing solutions. Their own actions or the actions of others. Work productively in Students positively contribute to every team, whether formal or informal. They teams while using apply an awareness of cultural difference to avoid barriers to productive and cultural/global positive interaction. They find ways to increase the engagement and contribution of

all team members. They plan and facilitate effective team meetings.

Standards Standards				
Standard #	Standard Description	Student Learning Objective	Clarification Statement	
3-LS2-1	Ecosystems: Interactions, Energy, and Dynamics	Construct an argument that some animals form groups that help members survive		
3-LS4-1	Biological Evolution: Unity and Diversity	Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.	Examples of data could include type, size, and distributions of fossil organisms. Examples of fossils and environments could include marine fossils found on dry land, tropical plant fossils found in Arctic areas, and fossils of extinct organisms.] [Assessment Boundary: Assessment does not include identification of specific fossils or present plants and animals. Assessment is limited to major fossil types and relative ages.]	
3-LS4-3	Biological Evolution: Unity and Diversity	Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.	Examples of evidence could include needs and characteristics of the organisms and habitats involved. The organisms and their habitat make up a system in which the parts depend on each other.	
3-LS4-4	Biological Evolution: Unity and Diversity	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.	Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.] [Assessment Boundary: Assessment is limited to a single environmental change. Assessment does not include the greenhouse effect or climate change.	
3-5-ETS1-1	Engineering Design	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.		

3-5-ETS1-2	Engineering Design	Generate and compare	
		multiple possible solutions to a	
		problem based on how well	
		each is likely to meet the	
		criteria and constraints of the	
		problem.	
3-5-ETS1-3	Engineering Design	Plan and carry out fair tests in	
		which variables are controlled	
		and failure points are	
		considered to identify aspects	
		of a model or prototype that	
		can be improved.	

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	3rd	4	8 weeks

Unit Title: Dealing with Hazardous Weather Worldwide

OVERVIEW OF UNIT:

In this unit of study, students organize and use data to describe typical weather conditions expected during a particular season. By applying their understanding of weather-related hazards, students are able to make a claim about the merit of a design solution that reduces the impacts of such hazards. The crosscutting concepts of patterns, cause and effect, and the influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. Students demonstrate grade-appropriate proficiency in asking questions and defining problems, analyzing and interpreting data, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Big Ideas

- Patterns of change can be used to make predictions.
- Scientist record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.
- Patterns of change can be used to make predictions.
- Climate describes the range of an area's typical weather conditions and the extent to which those conditions vary over years.
- Cause-and-effect relationships are routinely identified, tested, and used to explain change.
- Science affects everyday life.
- People's needs and wants change over time, as do their demands for new and improved technologies.
- A variety of natural hazards result from natural processes (e.g., *flooding*, *fast wind*, *or lightning*).
- Humans cannot eliminate natural hazards but can take steps to reduce their impacts.
- Engineers improve technologies or develop new ones to increase their benefits (e.g., better artificial limbs), decrease known risks (e.g., seatbelts in cars), and meet societal demands (e.g., cell phones).
- Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria).
- Different proposals for solutions can be compared on the basis of how well each one meets the criteria for success or how well each takes the constraints into account.

Essential Questions

- What is the typical weather near our home?
- How can we protect people from weather-related hazards?
- Can we predict the kind of weather that we will see in the spring, summer, autumn, or winter?

- How can climates in different regions of the world be described?
- How can we protect people from natural hazards such as flooding, fast wind, or lightening?

Objectives

- Students will be able to identify weather hazards where they live.
- Students will identify ways people protect themselves from natural hazards.
- Students will represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships.
- Students will obtain and combine information from books and other reliable media to explain phenomena.

Assessment

Students who understand the concepts can:

- Make predictions using patterns of change.
- Represent data in tables, bar graphs, and pictographs to reveal patterns that indicate relationships.
- Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. (Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.) Examples of data could include:
 - ✓ Average temperature
 - ✓ Precipitation
 - ✓ Wind direction

Students who understand the concepts can:

• Obtain and combine information from books and other reliable media to explain phenomena.

Students who understand the concepts can:

- Identify and test cause-and-effect relationships to explain change.
- Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem.
- Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard. Examples of design solutions to weather-related hazards could include:
 - ✓ Barriers to prevent flooding
 - ✓ Wind-resistant roofs
 - ✓ Lightning rods
- Define a simple design problem that can be solved through the development of an object, tool, process, or system and include several criteria for success and constraints on materials, time, or cost.
- Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Formative Assessment:

- STEMscopes activities and responses
- Science station activities
- Online guizzes and activities

Summative Assessment:

22

• Research and poster presentation

Benchmark:

Accessing Prior Knowledge activity

Alternative:

- Modified quizzes and activities
- Performance assessments

Key Vocabulary

Weather, climate, natural hazard, temperature, precipitation

Resources & Materials

- Teaching NGSS in Elementary School—Third Grade
- NSTA Web Seminar: Teaching NGSS in K-5: Constructing Explanations from Evidence
- NGSS Core Ideas: Earth's Systems

Technology Infusion

Teacher Technology:

- Google Classroom
- STEMscopes
- Promethean Board

Student Technology:

- Google Classroom
- STEMscopes
- Chromebooks
- iPads

Activities:

- Google Classroom
- STEMscopes videos and activities
- Chromebooks
- iPads

Standard	Standard Description	
8.1.5.DA.1	Collect, organize, and display data in order to highlight relationships or support a	
	claim.	
8.1.5.DA.5	Propose cause and effect relationships, predict outcomes, or communicate ideas using	
	data.	

Interdisciplinary Integration

Activities:

• In a combined social studies and science project, students will study homes around the world and how humans adapt their homes to protect themselves from the dangerous weather of a location.

Resources:

- Teacher Vision Cross-Curricular Theme Map -https://www.teachervision.com/teaching-methods/curriculum-planning/7167.html
- Engineering Go For It! http://egfi-k12.org/
- US Department of Education STEM http://www.ed.gov/stem
- Intel STEM Resource http://www.intel.com/content/www/us/en/education/k12/stem.html
- NASA STEM http://www.nasa.gov/audience/foreducators/expeditions/stem/#.VYrO2flViko
- PBS STEM http://www.pbs.org/teachers/stem/#content
- STEM Works http://stem-works.com/activities
- What Every Educator Should Know About Using Google by Shell Education
- Promoting Literacy in all Subjects by Glencoe http://www.glencoe.com/sec/teachingtoday/subject/promoting_literacy.phtml
- International Literacy Association Read Write Think http://www.readwritethink.org/

Standard	Standard Description	
6.1.5.GeoPP.2	Describe how landforms, climate and weather, and availability of resources have	
	impacted where and how people live and work in different regions of New Jersey and	
	the United States.	
NJSLS-ELA	Ask and answer questions and make relevant connections to demonstrate	
RI.CR.3.1	understanding of an informational text, referring explicitly to textual evidence as the	
	basis for the answers.	
NJSLS-ELA	Compare and contrast the elements of informational texts regarding the most	
RI.CT.3.8	important points and key details presented in two texts on the same topic.	

21st Century Life Skills Standards

Activities:

• Students will investigate the job of a meteorologist by watching connecting STEMscopes video and reading related texts. They will research the tools used used by meteorologists and create their own weathervanes and anonmeters.

Standard	Student Learning Objectives
9.2.5.CAP.3	Identify qualifications needed to pursue traditional and non-traditional careers and
	occupations.
9.4.5.CI.1	Use appropriate communication technologies to collaborate with individuals with
	diverse perspectives about a local and/or global climate change issue and deliberate
	about possible solutions (e.g., W.4.6, 3.MD.B.3,7.1.NM.IPERS.6).
9.4.5.CI.3	Participate in a brainstorming session with individuals with diverse perspectives to
	expand one's thinking about a topic of curiosity (e.g., 8.2.5.ED.2, 1.5.5.CR1a).

Careers

Activities:

• Students will work in teams to design and build a model of a home made to protect its inhabitants from a specific natural disaster.

Practice	Description
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways, and
and innovation.	they contribute those ideas in a useful and productive manner to improve their
	organization. They can consider unconventional ideas and suggestions as solutions
	to issues, tasks or problems, and they discern which ideas and suggestions will add
	greatest value. They seek new methods, practices, and ideas from a variety of
	sources and seek to apply those ideas to their own workplace. They take action on
	their ideas and understand how to bring innovation to an organization.
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through
	this when they occur and take action quickly to address the problem; they
	thoughtfully investigate the root cause of the problem prior to introducing solutions.
	Their own actions or the actions of others.
Work productively in	Students positively contribute to every team, whether formal or informal. They
teams while using	apply an awareness of cultural difference to avoid barriers to productive and
cultural/global	positive interaction. They find ways to increase the engagement and contribution of
competence.	all team members. They plan and facilitate effective team meetings.

Standards				
Standard #	Standard Description	Student Learning Objective	Clarification Statement	
ESS2.D		Develop a model using an analogy, to describe how weather and climate are related		
3-ESS2-1	Earth's Systems	Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.	Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.	
<u>3-ESS2-2</u>	Earth's Systems	Obtain and combine information to describe climates in different regions of the world.		

3-ESS3-1	Earth and Human Activity	Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.	Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind resistant roofs, and lightning rods.
3-5-ETS1-1	Engineering Design	Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.	
3-5-ETS1-2	Engineering Design	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.	
3-5-ETS1-3	Engineering Design	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.	

	1	••	$\alpha \mathbf{v}$	en	•	•	••	^	10
.,	ш		CI.	СП		7		.,	

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time

- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Califon Public School

Subject:	Grade:	Unit #:	Pacing:	
Science	Science 3rd		8 weeks	

Curriculum

Unit Title: Using Magnetic Force

Version Update: July 2025

OVERVIEW OF UNIT:

In this unit of study, students determine the effects of balanced and unbalanced forces on the motion of an object and the cause-and-effect relationships of electrical or magnetic interactions to define a simple design problem that can be solved with magnets. The crosscutting concept of cause and effect, and the interdependence of science, engineering, and technology, and the influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. Students are expected to demonstrate grade-appropriate proficiency in asking questions and defining problems. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Big Ideas

- Cause-and-effect relationships are routinely identified, tested, and used to explain change.
- Electric and magnetic forces between a pair of objects do not require that the objects be in contact.
- The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.
- The sizes of the forces in each situation depend on the properties of the objects and their distances apart.
- Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object's speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces, are used at this level.)
- The patterns of an object's motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.)
- Patterns of change can be used to make predictions.
- Objects in contact exert forces on each other.
- Science findings are based on recognizing patterns.

Essential Questions

- How can we use our understandings about magnets to solve problems?
- What are the relationships between electrical and magnetic forces?
- How do equal and unequal forces on an object affect the object?
- Can we use patterns that we observed to predict the future?

Objectives

- Students will use their understandings about magnets to solve problems.
- Students will identify relationships between electrical and magnetic forces.
- Students will plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.
- Students will make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution.
- Students will define a simple problem that can be solved through the development of a new or improved object or tool.

Assessment

Students who understand the concepts are able to:

- Define a simple problem that can be solved through the development of a new or improved object or tool.
- Define a simple design problem that can be solved by applying scientific ideas about magnets (e.g., constructing a latch to keep a door shut or creating a device to keep two moving objects from touching each other).
- Define a simple design problem that can be solved through the development of an object, tool, process, or system, and include several criteria for success and constraints on material, time, or cost.
- Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Formative Assessment:

- STEMscopes activities and responses
- Science station activities
- Online quizzes and activities

Summative Assessment:

• Research and poster presentation

Benchmark:

• Accessing Prior Knowledge activity

Alternative:

- Modified quizzes and activities
- Performance assessments

Kev Vocabulary

Magnetism, electricity

Resources & Materials

- Connections Between Practices in NGSS, Common Core Math, and Common Core ELA
- Engineering Design as a Core Idea
- NGSS Core Ideas: Motion and Stability: Forces and Interactions

Technology Infusion

Teacher Technology:

- Google Classroom
- STEMscopes
- Promethean Board

Student Technology:

- Google Classroom
- STEMscopes
- Chromebooks
- iPads

Activities:

- Google Classroom
- STEMscopes videos and activities
- Chromebooks
- iPads

Standard	Standard Description
8.1.5.DA.1	Collect, organize, and display data in order to highlight relationships or support a
	claim.
8.1.5.DA.5	Propose cause and effect relationships, predict outcomes, or communicate ideas using
	data.

Interdisciplinary Integration

Activities:

• Students will read and respond to informational articles about electric and magnetic forces.

Resources:

- Teacher Vision Cross-Curricular Theme Map https://www.teachervision.com/teaching-methods/curriculum-planning/7167.html
- Engineering Go For It! http://egfi-k12.org/
- US Department of Education STEM http://www.ed.gov/stem
- Intel STEM Resource http://www.intel.com/content/www/us/en/education/k12/stem.html
- NASA STEM http://www.nasa.gov/audience/foreducators/expeditions/stem/#.VYrO2flViko
- PBS STEM http://www.pbs.org/teachers/stem/#content
- STEM Works http://stem-works.com/activities
- What Every Educator Should Know About Using Google by Shell Education

• Promoting Literacy in all Subjects by Glencoe http://www.glencoe.com/sec/teachingtoday/subject/promoting literacy.phtml International Literacy Association Read Write Think - http://www.readwritethink.org/

Standard	Literacy Association Read Write Think - http://www.readwritethink.org/ Standard Description
NJSLS-ELA	Ask and answer questions and make relevant connections to demonstrate
RI.CR.3.1	understanding of an informational text, referring explicitly to textual evidence as the
KI.CK.J.1	basis for the answers.
NJSLS-ELA	Describe the relationship between a series of historical events, scientific ideas or
	,
RI.IT.3.3	concepts, or steps in technical procedures in a text, using language that pertains to
	time, sequence, and cause/effect.
NJSLS-ELA	Describe the logical connection between particular sentences and paragraphs in a text
RI.AA.3.7	(e.g., comparison, cause/effect, first/second/third in a sequence) to support specific
	points the author makes in a text.
NJSLS-ELA	Write informative/explanatory texts to examine a topic and convey ideas and
W.IW.3.2	information clearly.
NJSLS-ELA	Use discussion, books, or media resources to gather ideas, outline them, and
W.SE.3.6	prioritize the information to include while planning to write about a topic.
NJSLS-ELA	Ask and answer questions about information from a speaker, offering appropriate
SL.ES.3.3	elaboration and detail.
Mathematical	Reason abstractly and quantitatively.
Practice #2	
3.M.A.2	Measure and estimate liquid volumes and masses of objects using standard units of
	grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve
	one-step word problems involving masses or volumes that are given in the same
	units, e.g., by using drawings (such as a beaker with a measurement scale) to
	represent the problem. (Clarification: "Measure and estimate liquid volumes and
	1
	masses" excludes compound units such as cm ³ and finding the geometric volume of a
	container. "Multiplying to solve one-step word problems" excludes multiplicative
	comparison problems (problems involving "times as much"; See Glossary, Tables
	(2a-2d))

21st Century Life Skills Standards **Activities:** Students will watch the content connections video on heat shield engineers and discuss how it relates to the science concepts they have been studying. Standard **Student Learning Objectives** 9.2.5.CAP.3 Identify qualifications needed to pursue traditional and non-traditional careers and occupations. 9.4.5.CI.1 Use appropriate communication technologies to collaborate with individuals with diverse perspectives about a local and/or global climate change issue and deliberate about possible solutions (e.g., W.4.6, 3.MD.B.3,7.1.NM.IPERS.6). 9.4.5.CI.3 Participate in a brainstorming session with individuals with diverse perspectives to expand one's thinking about a topic of curiosity (e.g., 8.2.5.ED.2, 1.5.5.CR1a).

	Careers		
Activities:	Activities:		
Students will wor	k in teams to create a pop fly launcher built from recycled and repurposed materials.		
Practice	Description		
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways,		
and innovation.	and they contribute those ideas in a useful and productive manner to improve their		
	organization. They can consider unconventional ideas and suggestions as solutions		
	to issues, tasks or problems, and they discern which ideas and suggestions will add		
	greatest value. They seek new methods, practices, and ideas from a variety of		
	sources and seek to apply those ideas to their own workplace. They take action on		
	their ideas and understand how to bring innovation to an organization.		
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the		
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the		
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is		
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through		
	this when they occur and take action quickly to address the problem; they		
	thoughtfully investigate the root cause of the problem prior to introducing		
	solutions. Their own actions or the actions of others.		
Work productively in	Students positively contribute to every team, whether formal or informal. They		
teams while using	apply an awareness of cultural difference to avoid barriers to productive and		
cultural/global	positive interaction. They find ways to increase the engagement and contribution of		
competence.	all team members. They plan and facilitate effective team meetings.		

Standards						
Standard #	Standard Description	Student Learning Objective	Clarification Statement			
3-PS2-1	Motion and Stability: Forces and Interactions	Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.	Examples could include an unbalanced force on one side of a ball can make it start moving; and, balanced forces pushing on a box from both sides will not produce any motion at all. Qualitative and conceptual, but not quantitative addition of forces, are used at this level. [Assessment Boundary: Assessment is limited to one variable at a time: number, size, or direction of forces. Assessment does not include quantitative force size, only qualitative and relative. Assessment is limited to gravity being addressed as a force that pulls objects down.			

Version Update: July 2025 32

version opua	ate: July 2025		32
3-PS2-2	Motion and Stability: Forces and Interactions	Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion	Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.] [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]
3-PS2-3	Motion and Stability: Forces and Interactions	Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.	Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]
3-PS2-4	Motion and Stability: Forces and Interactions	Define a simple design problem that can be solved by applying scientific ideas about magnets.	Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.
3-5-ETS1-1	Engineering Design	Define a simple design problem reflecting a need or a want that includes specified criteria for success and	

		constraints on materials, time, or cost.	
3-5-ETS1-2	Engineering Design	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.	
3-5-ETS1-3	Engineering Design	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.	

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.ni.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources