| Ge | ometry | Unit 1: Lines and Angles (Ch. 1-3) | | | Su | ggested Length: 6 weeks | |----|--|--|----------|---|---|---| | E | ssential Questions | Program of Studies and Core Content | K | ey Terms and Vocabulary | Classroom Instruction and <u>Assessment</u> Student will: | | | | | <u>Core Content</u> | | | | | | 1. | What properties do lines and angles demonstrate in Geometry? | MA-HS-1.1.1 Students will compare real numbers using order relations (less than, greater than, equal to) and represent problems using real numbers. MA-HS-1.1.2 Students will demonstrate the | | Axiom | | | | | Geometry: | relationships between different subsets of the | | Theorem | | | | 2. | How do you write the equation of a | real number system. MA-HS-1.2.1 Students will estimate solutions to problems with real numbers (including | | Euclidean Geometry
Collinear
Coplanar | | Review necessary Algebra 1 material in order to complete Geometry material. Investigate the various types of lines and their properties | | | line? | very large and very small quantities) in both real-world and mathematical problems, and | - | Vertical Angles
Vertices | | by finding points of intersection and angle measures. DOK 3 | | 3. | What affect do planes have on | use the estimations to check for reasonable computational results. | | Linear Pairs
Interior/Exterior | | Investigate the various types of angles and their properties by measuring adjacent angles and vertical | | | these lines? | ☐ MA-HS-1.3.1 Students will solve real-world and mathematical problems to specified | | Complementary Angles Supplementary Angles | | angles. DOK 3 Investigate the various properties of parallel and | | 4. | How do sequences & | accuracy levels by simplifying expressions with real numbers involving addition, | | Corresponding
Betweenness | | perpendicular lines by calculating and comparing slope. DOK 2 | | | series compare and contrast? | subtraction, multiplication, division, absolute value, integer exponents, roots (square, cube) and factorials. | | Slope
Parallelism
Perpendicular Lines | | Investigate various angle relationships by measuring angles formed by a transversal intersecting parallel lines. DOK 3 | | 5. | How are | □ MA-HS-1.3.2 Students will: | | Skewness | | Use algebra to find angle measure and missing sides of | | | sequences created? | describe and extend arithmetic and geometric sequences; determine a specific term of a sequence given | | Commutative Prop. Associative Prop. Distributive Prop. | | polygons. DOK 2 Use a straight edge and compass to construct various shapes and diagrams. DOK 2 | | 6. | How can you use formulas to work with sequences and | an explicit formula; determine an explicit rule for the nth term of an arithmetic sequence and apply sequences to solve real-world problems. | | Reflexive Prop. Symmetric Prop. Transitive Prop. Identity Prop. | | Demonstrate their understanding of slope, midpoint, and distance by using a coordinate plane to diagram various segments and calculate their slope, midpoint, and length. DOK 2 | | | series? | MA-HS-1.3.3 Students will write an explicit rule for the nth term of a geometric sequence. | | Corresponding angles Arithmetic Sequence | | Discover how to extend sequences and to find given terms of them. DOK 3 | | 7. | What types of angles exist in Geometry? | ☐ MA-HS-1.4.1 Students will apply ratios, percents and proportional reasoning to solve real-world problems (e.g., those involving | | Geometric Sequence
Alternate Interior
Angles | 0 | Learn the various basic properties (associative, commutative, etc.) used in Geometry. DOK 2 Investigate how to create formulas to create sequences & series. DOK 3 | | 8. | What are the | slope and rate, percent of increase and decrease) and will explain how slope | | | | Complete a test on Points, Lines, Planes and Angles | Pathway to Proficiency 1 of 8 | Geometry | Unit 1: Lines and Angles (Ch. 1-3) | | Suggested Length: 6 weeks | |--|--|--------------------------|---| | Essential Questions | Program of Studies and Core Content | Key Terms and Vocabulary | Classroom Instruction and <u>Assessment</u> Student will: | | similarities and differences between polygons and circles? 9. How are | determines a rate of change in linear functions representing real-world problems. MA-HS-1.5.1 Students will identify real number properties (commutative properties of addition and multiplication, associative properties of addition and multiplication, distributive property of multiplication over | | (Chapter 1) CLA DOK 3 Complete a test on sequences and series CLA DOK 3 Complete a test on Parallel and Perpendicular Lines (Chapter 3) CLA DOK 3 | | polygons and circles different? | addition and subtraction, identity properties of addition and multiplication and inverse properties of addition and multiplication) when used to justify a given step in | | | | 10. How do you solve systems of equations? | simplifying an expression or solving an equation. MA-HS-1.5.2 Students will use equivalence relations (reflexive, symmetric, transitive). | | | | | MA-HS-2.2.1 Students will continue to apply to both real-world and mathematical problems U.S. customary and metric systems of measurement. | | | | | MA-HS-3.1.1 Students will analyze and apply spatial relationships (not using Cartesian coordinates) among points, lines, and planes (e.g., betweenness of points, midpoint, segment length, collinear, coplanar, parallel, perpendicular, skew). DOK 2 | | | | | MA-HS-3.1.2 Students will use spatial relationships to prove basic theorems. | | | | | MA-HS-3.1.3 Students will analyze and apply angle relationships (e.g., linear pairs, vertical, complementary, supplementary, corresponding, and alternate interior angles) in real-world or mathematical problems. DOK 2 | | | | | MA-HS-3.1.4 Students will use angle relationships to prove basic theorems. MA-HA-3.1.5 Students will classify and apply properties of two-dimensional | | | Pathway to Proficiency 2 of 8 | Geometry | Unit 1: Lines and Angles (Ch. 1-3) | | Suggested Length: 6 weeks | |----------------------------|--|--------------------------|---| | Essential Questions | Program of Studies and Core Content | Key Terms and Vocabulary | Classroom Instruction and <u>Assessment</u> Student will: | | | geometric figures (e.g., number of sides, vertices, length of sides, sum of interior and exterior angle measures). DOK 2 MA-HS-3.1.6 Students will know the definitions and basic properties of a circle and will use them to prove basic theorems and solve problems. MA-HS-3.3.1 Students will apply algebraic concepts and graphing in the coordinate plane to analyze and solve problems (e.g., finding the final coordinates for a specified polygon, midpoints, betweenness of points, parallel and perpendicular lines, the distance between two points, the slope of a segment). DOK 2 MA-HS-3.4.1 Students will identify definitions, axioms, and theorems, explain the necessity of, them and give examples of definitions them. MA-HS-3.4.3 Students will be able to perform constructions such as a line parallel to a given line through a point not on the line, | | Student will: | | | MA-HS-3.4.1 Students will identify definitions, axioms, and theorems, explain the necessity of, them and give examples of definitions them. MA-HS-3.4.3 Students will be able to perform constructions such as a line parallel | | | | Geometry | Unit 2: Triangles (Ch. 4-7) | | Suggested Length: 12 weeks | |---|---|---|--| | Essential Question | Program of Studies and Core Content | Key Terms and Vocabulary | Classroom Instruction and <u>Assessment</u> Student will: | | | Core Content | | State with | | 1. What are the differences between isosceles, scalene, and equilateral triangles? | □ MA-HS-1.3.1 Students will solve real-world problems and mathematical problems to specified accuracy levels by simplifying expressions with real numbers involving addition, subtraction, multiplication, division, absolute value, integer exponents, roots (square, cube), and factorials. DOK 2 | Pythagorean theoremTrigonometric ratios | Demonstrate understanding of the various types of triangles, and the various properties they exhibit. DOK 2. Investigate the various types of triangle congruencies by comparing measures of angles and sides. DOK 2 Investigate the various types of special segments in triangles by constructing each. DOK 2 Demonstrate their understanding of ratios and | | 2. What are the differences between acute obtuse, right and equilatera Triangles? | ☐ MA-HS-1.4.1 Students will apply ratios, percents and proportional reasoning to solve real-world problems (e.g., those involving slope and rate, percent of increase and decrease) and will explain how slope determines a rate of change in linear functions representing real-world | □ Relationships □ Ratio □ Proportion □ Sine □ Cosine □ Tangent □ Rotation | proportions by calculating the amount of fertilizer needed for a field or the run of a wheelchair ramp given the slope and the rise, and to otherwise solve triangles. DOK 3 Investigate similarity by using the mirror method or shadow method of indirect measurement to find the height of the flagpole, school building and etc. DOK 3 | | 3. What are angl
bisectors,
medians,
altitudes, and
perpendicular
bisectors? | problems. DOK 2 MA-HS-2.1.3 Students will apply definitions and properties of right triangle relationships (right triangle trigonometry and the Pythagorean theorem) to determine length and angle measures to solve real-world and mathematical | ☐ Transitive☐ Congruence | Complete a test on Congruent Triangles (Chapter 4) DOK 3 Complete a test on Relationships in Triangles (Chapter 5) CLA DOK 3 Complete a test on Proportions and Similarity (Chapter 6) CLA DOK 3 Complete a test on Right Triangles and Trigonometry | | 4. What are trigonometric ratios and how do they relate sine, cosine, and tangent? | problems. DOK 2 MA-HS-2.1.4 - Students will apply special right triangles and the converse of the Pythagorean theorem to solve real-world problems. MA-HS-2.2.1 Students will continue to apply to both real world and mathematical problems | | (Chapter 7) CLA DOK 3 | | 5. What is the difference between congruency ar similarity, and | U.S. customary and metric systems of measurement.MA-HS-3.1.5 Students will classify and | | | Pathway to Proficiency 4 of 8 | Ge | ometry | Unit 2: Triangles (Ch. 4-7) | | Suggested Length: 12 weeks | |----|--|--|--------------------------|--| | Es | sential Questions | Program of Studies and Core Content | Key Terms and Vocabulary | Classroom Instruction and Assessment Student will: | | | how do they relate to triangles? | vertices, length of sides, sum of interior and exterior angle measures). DOK 2 MA-HS-3.1.12 Students will apply the concents of congruence and similarity to | | | | 6. | How can triangles be used to find indirect measurements? | concepts of congruence and similarity to solve real-world and mathematical problems. DOK 3 MA-HS-3.1.13 Students will prove triangles congruent and similar. MA-HS-3.3.1 Students will apply algebraic concepts and graphing in the coordinate plane to analyze and solve problems (e.g., finding the final coordinates for a specified polygon, midpoints, betweenness of points, parallel and perpendicular lines, the distance between two points, the slope of a segment). DOK 2 MA-HS-5.1.7 Students will apply and use direct and inverse variation to solve real-world and mathematical problems. MA-HS-5.2.1 Students will apply order of operations, real number properties (identity, inverse, commutative, associative, | | | | | | distributive, closure) and rules of exponents (integer) to simplify algebraic expressions | | | | Ge | ometry | Unit 3: Quadrilaterals and Circles (Ch. 8-10) | | Suggested Length: 9 weeks | | |------------------------------------|--|---|---|--|--| | Es | ssential Questions | Program of Studies and Core Content | Key Terms and Vocabulary | Classroom Instruction and <u>Assessment</u> Student will: | | | | | <u>Core Content</u> | | | | | 1. | What properties make a quadrilateral different from other geometric figures? | □ MA-HS-3.2.1Students will identify and describe properties of and apply geometric transformations within a plane to solve real-world and mathematical problems. □ DOK 3 □ MA-HS-2.1.3 Students will apply definitions and properties of right triangle relationships | | ☐ Investigate the various properties of quadrilaterals by comparing angle, side and diagonal measure. DOK 2 | | | 2. | What are the properties of quadrilaterals? | (right triangle trigonometry and the Pythagorean theorem) to determine length and angle measures to solve real-world and mathematical problems. | □ Transformation□ Quadrilateral | □ Classify various types of quadrilaterals and polygons based on various properties they exhibit. DOK 2 □ Investigate the various properties of transformations by using vectors. | | | 3. | How do the various transformations affect the properties of quadrilaterals? | MA-HS-2.1.4 Students will apply special right triangles and the converse of the Pythagorean theorem to solve real-world problems MA-HS-3.1.5 Students will classify and apply properties of two-dimensional geometric figures (e.g., number of sides, vertices, length | □ Kite □ Trapezoid □ Parallelogram □ Rhombus □ Rectangle □ Square □ N-gon | Examine how different transformations are used to create patterns and problems with similar figures. DOK 2 Investigate the various properties of circles by measuring angles formed by chords, secants, and tangents. DOK 3 Investigate and classify polygons by creating mobiles or | | | 4. | What is a vector? | of sides, sum of interior and exterior angle measures). □ MA-HS-3.1.12 Students will apply the | DiagonalsRotationTranslation | other representations that compare/contrast those polygons. DOK 3 | | | 5. 6. | How does it affect the properties of a quadrilateral? | concepts of congruence and similarity to solve real-world and mathematical problems. MA-HS-5.1.1 Students will identify multiple representations (tables, graphs, equations) of functions (linear, quadratic, absolute value, exponential) in real-world or mathematical | Congruence Dilation Reflection | Demonstrate their understanding of quadrilaterals and other polygons by finding angle and side measures. DOK 2 Complete a test on Chapter 8 (Quadrilaterals). DOK 3 Complete a test on Chapter 9 (Transformations). DOK 3 Complete a test on Chapter 10 (Circles). DOK 3 | | | J. | properties of circles? | problems. | | | | | 7. | How do
transformations
on circles differ
from | | | | | Pathway to Proficiency 6 of 8 | Geometry | Unit 3: Quadrilaterals and Circles (Ch. 8-10) | | Suggested Length: 9 weeks | | |--|---|--------------------------|--|--| | Essential Questions | Program of Studies and Core Content | Key Terms and Vocabulary | Classroom Instruction and Assessment Student will: | | | transformations on polygons? | | | | | | 8. How do arcs, chords, central angles, and inscribed angles behave in circles? | | | | | | 9. What effect do reflections, rotations, translations, and dilations have on two and three-dimensional objects? | | | | | | Geometry | Unit 4: Area and Volume (Ch. 11-12) | | Suggested Length: 9 weeks | |----------------------------|--|--------------------------|--| | Essential Questions | Program of Studies and Core Content | Key Terms and Vocabulary | Classroom Instruction and <u>Assessment</u> Student will: | | | Core Content | | | | 1. How does one | | | | | find the area of a | ☐ MA-HS-2.1.1Students will determine the | | | | figure? | surface area and volume of right | | | | | rectangular prisms, pyramids, cylinders, | | | | 2. How does one | cones, and spheres in real-world and | | □ Demonstrate their understanding of formulas by finding | | find the volume of a | mathematical problems. DOK 2 | | area, surface area, and volume of prisms, cylinders, | | shape? | ☐ MA-HS-2.1.2 Students will describe how a | | cones, and pyramids. DOK 3 | | _ | change in one or more dimensions of a | | ☐ Investigate the effect on surface area and volume if one | | 3. How does | geometric figure affects the perimeter, area | □ 2 – D | of the parameters is changed (length, width, or height). | | manipulation of a | and volume of the figure. DOK 3 | □ 3 – D | DOK 3 | | Geometry | Unit 4: Area and Volume (Ch. 11-12) | | Suggested Length: 9 weeks | |----------------------------|--|-----------------------------------|---| | Essential Questions | Program of Studies and Core Content | Key Terms and Vocabulary | Classroom Instruction and <u>Assessment</u> | | | Program of Studies and Core Content MA-HS-2.2.1 Students will continue to apply to both real-world and mathematical problems U.S. customary and metric systems of measurement. MA-HS-3.1.5 Students will classify and apply properties of two-dimensional geometric figures (e.g., number of sides, vertices, length of sides, sum of interior and exterior angle measures). MA-HS-3.1.6 Students will know the definitions and basic properties of a circle and will use them to prove basic theorems and solve problems. MA-HS-3.1.9 Students will classify and apply properties of three-dimensional geometric figures (e.g., number of edges, faces, vertices). DOK 2 MA-HS-3.1.10 Students will describe the intersection of a plane with a three-dimensional figure. MA-HS-3.1.11 Students will visualize solids | Key Terms and Vocabulary Faces | 66 6 | | | and surfaces in three-dimensional space when given two-dimensional representations (e.g., nets multiple views) and create two-dimensional representations for the surfaces of three-dimensional objects. MA-HS-3.1.12 Students will apply the concepts of congruence and similarity to solve real-world and mathematical problems. | | |