Teacher: Ericka R. Woodson Week of: 5/12/2025~5/16/2025 Subject: 7th Grade~ Life Science Period: 1st~6th

cacrici.	Ericka R. Woodson	W 66K 01. 5/12/2025~5	7 107 2025	Subject. 1- Grade- Life Sci	icricc i criod	. 1 ~ Out
	OBJECTIVES	ACTIVITIES	RESOURCES	HOMEWORK	EVALUATION	STANDARDS
MON	The student will learn about Ecosystems: Interactions, Energy, & Dynamics • Matter & Energy Flow • Population Dynamics • Interdependent Relationships • Biodiversity	Bell Ringer: What does life science mean to you? Final Examination Review	✓ Textbook Laboratory Experience Video Slides / Pictures Assessment ✓ Handout / Worksheet Chart / Graph Map / Model ✓ Chromebook/Computer PowerPoint Other:	Complete any incomplete work.	✓ Oral Responses ✓ Homework ✓ Notebook Quiz Major Test Project/Report/Presentation ✓ Daily Work ✓ Observation ✓ Worksheet/Handout Lab/ Lab Composition ✓ Class/Group Participation	S6. Analyze and interpret data to predict how environmental conditions, genetic factors, and resource availability will impact the growth of individual organisms and populations of organisms in an ecosystem. S7. Analyze and interpret data to explain how density-independent and density-dependent limiting factors in an ecosystem can lead to shifts in populations. S8. Construct an explanation that predicts patterns of interactions between and among organisms in different ecosystems. S9. Design a solution to maintain biodiversity and ecosystem services in a given scenario. Examples: considering economic and social factors when making decisions about purifying water, recycling nutrients, preventing soil erosion, improving conditions for threatened and endangered species S10. Obtain, evaluate, and communicate information about characteristic animal behaviors and specialized plant structures and their effect on the probability of successful reproduction. Examples: building nest to protect young from cold, flower characteristics that attract pollinators
TUE	The student will learn about Ecosystems: Interactions, Energy, & Dynamics Matter & Energy Flow Population Dynamics Interdependent Relationships Biodiversity	Bell Ringer: What topic was most interesting in this life science class? Final Examination Review	✓ Textbook Laboratory Experience Video Slides / Pictures Assessment ✓ Handout / Worksheet Chart / Graph Map / Model ✓ Chromebook/Computer PowerPoint Other:	Complete any incomplete work.	✓ Oral Responses ✓ Homework ✓ Notebook Quiz Major Test Project/Report/Presentation ✓ Daily Work ✓ Observation ✓ Worksheet/Handout Lab/ Lab Composition ✓ Class/Group Participation	S6. Analyze and interpret data to predict how environmental conditions, genetic factors, and resource availability will impact the growth of individual organisms and populations of organisms in an ecosystem. S7. Analyze and interpret data to explain how density-independent and density-dependent limiting factors in an ecosystem can lead to shifts in populations. S8. Construct an explanation that predicts patterns of interactions between and among organisms in different ecosystems. S9. Design a solution to maintain biodiversity and ecosystem services in a given scenario. Examples: considering economic and social factors when making decisions about purifying water, recycling nutrients, preventing soil erosion, improving conditions for threatened and endangered species S10. Obtain, evaluate, and communicate information about characteristic animal behaviors and specialized plant structures and their effect on the probability of successful reproduction. Examples: building nest to protect young from cold, flower characteristics that attract pollinators
WED	The student will learn about Ecosystems: Interactions, Energy, & Dynamics • Matter & Energy Flow • Population Dynamics • Interdependent Relationships • Biodiversity	Bell Ringer: What would you change about the life science class? Final Examination Review	✓ Textbook Laboratory Experience Video Slides / Pictures Assessment ✓ Handout / Worksheet Chart / Graph Map / Model ✓ Chromebook/Computer PowerPoint Other:	Complete any incomplete work.	Oral Responses Homework Notebook Quiz Major Test Project/Report/Presentation Daily Work Observation Worksheet/Handout Lab/ Lab Composition Class/Group Participation	S6. Analyze and interpret data to predict how environmental conditions, genetic factors, and resource availability will impact the growth of individual organisms and populations of organisms in an ecosystem. S7. Analyze and interpret data to explain how density-independent and density-dependent limiting factors in an ecosystem can lead to shifts in populations. S8. Construct an explanation that predicts patterns of interactions between and among organisms in different ecosystems. S9. Design a solution to maintain biodiversity and ecosystem services in a given scenario. Examples: considering economic and social factors when making decisions about purifying water, recycling nutrients, preventing soil erosion, improving conditions for threatened and endangered species S10. Obtain, evaluate, and communicate information about characteristic animal behaviors and specialized plant structures and their effect on the probability of successful reproduction. Examples: building nest to protect young from cold, flower characteristics that attract pollinators

THUR	The student will learn about Ecosystems: Interactions, Energy, & Dynamics • Matter & Energy Flow • Population Dynamics • Interdependent Relationships • Biodiversity	Bell Ringer: What did you gain out of life science this year? Final Examination Review	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Textbook Laboratory Experience Video Slides / Pictures Assessment Handout / Worksheet Chart / Graph Map / Model Chromebook/Computer PowerPoint Other:	Complete any incomplete work.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Oral Responses Homework Notebook Quiz Major Test Project/Report/Presentation Daily Work Observation Worksheet/Handout Lab/ Lab Composition Class/Group Participation	S6. Analyze and interpret data to predict how environmental conditions, genetic factors, and resource availability will impact the growth of individual organisms and populations of organisms in an ecosystem. S7. Analyze and interpret data to explain how density-independent and density-dependent limiting factors in an ecosystem can lead to shifts in populations. S8. Construct an explanation that predicts patterns of interactions between and among organisms in different ecosystems. S9. Design a solution to maintain biodiversity and ecosystem services in a given scenario. Examples: considering economic and social factors when making decisions about purifying water, recycling nutrients, preventing soil erosion, improving conditions for threatened and endangered species 510. Obtain, evaluate, and communicate information about characteristic animal behaviors and specialized plant structures and their effect on the probability of successful reproduction. Examples: building nest to protect young from cold, flower characteristics that attract pollinators
FRI	The student will learn about Ecosystems: Interactions, Energy, & Dynamics • Matter & Energy Flow • Population Dynamics • Interdependent Relationships • Biodiversity	Bell Ringer: What are your expectations of your science class next year? Final Examination Review	7	Textbook Laboratory Experience Video Slides / Pictures Assessment Handout / Worksheet Chart / Graph Map / Model Chromebook/Computer PowerPoint Other:	Complete any incomplete work.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Oral Responses Homework Notebook Quiz Major Test Project/Report/Presentation Daily Work Observation Worksheet/Handout Lab/ Lab Composition Class/Group Participation	S6. Analyze and interpret data to predict how environmental conditions, genetic factors, and resource availability will impact the growth of individual organisms and populations of organisms in an ecosystem. S7. Analyze and interpret data to explain how density-independent and density-dependent limiting factors in an ecosystem can lead to shifts in populations. S8. Construct an explanation that predicts patterns of interactions between and among organisms in different ecosystems. S9. Design a solution to maintain biodiversity and ecosystem services in a given scenario. Examples: considering economic and social factors when making decisions about purifying water, recycling nutrients, preventing soil erosion, improving conditions for threatened and endangered species S10. Obtain, evaluate, and communicate information about characteristic animal behaviors and specialized plant structures and their effect on the probability of successful reproduction. Examples: building nest to protect young from cold, flower characteristics that attract pollinators