7th Grade Math Essential Standards \& Learning Targets 2023-2024

Ratio and Proportion (RP)					
7.RP.A Analyze proportional relationships and use them to solve mathematical problems and	7.RP.A. 1	Compute unit rates associated with ratios involving both simple and complex fractions, including ratios of quantities measured in like or different units.	I can calculate unit rates from ratios, simple and complex fractions. I can use rates to compare two quantities with different units.	rate, unit rate, ratio, complex fractions	Review Sessions in class and before school (worksheets, slates)
problems in realworld context.	7.RP.A. 2	Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin). b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $\mathrm{t}=\mathrm{pn}$. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.	I can identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.	rate, unit rate, ratio, proportion, complex fractions, constant of proportionality	
	7.RP.A. 3	Use proportional relationships to solve multi-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error).			
		stem (NS)			
7.NS.A Apply and extend previous understanding of operations with fractions to add, subtract, multiply, and divide rational numbers except division by zero.	7.NS.A. 1	Add and subtract integers and other rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0 . b. Understand $\mathrm{p}+\mathrm{q}$ as the number located a distance $\|\mathrm{q}\|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing realworld context. c. Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world context. d. Apply properties of operations as strategies to add and subtract rational numbers.	I can show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world context. I can use the additive inverse, $\mathrm{p}-\mathrm{q}=\mathrm{p}+(-\mathrm{q})$; to show subtraction as addition.		

7.NS.A
Apply and extend Apply and
previous
understanding of fractions to add, and divide rational numbers except
7.ns.A. 1 iter Interpret sums of ration of (are additive inverses). world context.
c. Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number
line is the absolute value of their difference, and apply this principle in real-world context.
ubtract rational numbers.

7.NS.A (cont.)	7.NS.A. 2	Multiply and divide integers and other rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world context. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real-world context. c. Apply properties of operations as strategies to multiply and divide rational numbers. d. Convert a rational number to decimal form using long division; know that the decimal form of a rational number terminates in 0's or eventually repeats.	I can solve mathematical problems and problems in real-world context involving the four operations with rational numbers - these computations with rational numbers extend the rules for manipulating fractions to complex fractions where $\mathrm{a} / \mathrm{b} \div \mathrm{c} / \mathrm{d}$ when $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d are all integers and b, c, and $\mathrm{d} \neq 0$.
	7.NS.A. 3	Solve mathematical problems and problems in real-world context involving the four operations with rational numbers. Computations with rational numbers extend the rules for manipulating fractions to complex fractions where $a / b \div c / d$ when a, b, c, and d are all integers and b, c, and $\mathrm{d} \neq 0$.	
Expressions and Equations (EE)			
7.EE.A Use properties of operations to generate equivalent expressions.	7.EE.A. 1	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.	I can solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. I can compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.
	7.EE.A. 2	Rewrite an expression in different forms, and understand the relationship between the different forms and their meanings in a problem context. For example, $a+0.05 a=$ 1.05 a means that "increase by 5% " is the same as "multiply by 1.05."	
7.EE.B Solve mathematical problems and problems in realworld context using numerical and algebraic expressions and equations.	7.EE.B. 3	Solve multi-step mathematical problems and problems in real-world context posed with positive and negative rational numbers in any form. Convert between forms as appropriate and assess the reasonableness of answers. For example, If a woman making \$25 an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$ per hour.	
	7.EE.B. 4	Use variables to represent quantities in mathematical problems and problems in real-world context, and construct simple equations and inequalities to solve problems. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.	
Geometry (G)			
7.G.A Draw, construct, and describe geometrical figures, and describe the relationships between them.	7.G.A. 1	Solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.	I can solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
	7.G.A. 2	Draw geometric shapes with given conditions using a variety of methods. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	
	7.G.A. 3	Describe the two-dimensional figures that result from slicing three-dimensional figures.	

7.G.B Solve mathematical problems and problems in realworld context involving angle measure, area, surface area, and volume.	7.G.B. 4	Understand and use the formulas for the area and circumference of a circle to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	I can use the formulas for the area and circumference of a circle to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	
	7.G.B. 5	Use facts about supplementary, complementary, vertical, and adjacent angles in multi-step problems to write and solve simple equations for an unknown angle in a figure.		Supplementary, complementary, vertical and adjacent
	7.G.B. 6	Solve mathematical problems and problems in a realworld context involving area of two-dimensional objects composed of triangles, quadrilaterals, and other polygons. Solve mathematical problems and problems in real-world context involving volume and surface area of threedimensional objects composed of cubes and right prisms.		
Statistics and Probability (SP)				
7.SP.A Use random sampling to draw inferences about a population.	7.SP.A. 1	Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.		
	7.SP.A. 2	Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.		
7.SP.B Draw informal comparative inferences about two populations.	7.SP.B. 3	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.		
7.SP.B (cont.)	7.SP.B. 4	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.		
7.SP.C Investigate chance processes and develop, use and evaluate probability models.	7.SP.C. 5	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.		
	7.SP.C. 6	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.		

| | Develop a probability model and use it to find
 probabilities of events. Compare probabilities from a
 model to observed frequencies. If the agreement is not
 good, explain possible sources of the discrepancy. |
| :---: | :--- | :--- | :--- |
| 7.Sp.C.7 | a. Develop a uniform probability model by assigning equal
 probability to all outcomes, and use the model to
 determine probabilities of events. For example, if a
 student is selected at random from a class, find the
 probability that Jane will be selected and the probability
 that a girl will be selected. |
| b. Develop a probability model (which may not be
 uniform) by observing frequencies in data generated from
 a chance process. For example, find the approximate
 probability that a spinning penny will land heads up or
 that a tossed paper cup will land openend down. Do the
 outcomes for the spinning penny appear to be equally
 likely based on the observed frequencies? | |

Standards for Mathematical Practice			
7.MP.1	Make sense of problems and persevere in solving them. Mathematically proficient students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. While engaging in productive struggle to solve a problem, they continually ask themselves, "Does this make sense?" to monitor and evaluate their progress and change course if necessary. Orce they have a solution, they look back at the problem to to determine if the solution is reasonable and accurate. Mathematically proficient students check their solutions to problems using different methods, approaches, or representations. They also compare and understand different representations of problems and different solution pathways, both their own and those of others.		
7.MP.2	Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. Students can contextualize and decontextualize problems involving quantitative relationshipss. They contextualize quantities, perations, and expressions by describing a corresponding situation. They decontextualize a situation by representing it symbolicilly. As they manipulate the		
symbols, they can pause as needed to			
access the meaning of the numbers, the			
units, and the operations that the symbols			
represent. Mathematically proficient			
students know and flexibly use different			
properties of operations, numbers, and			
geometric objects and when appropriate			
they interpret their solution in terms of the			
context.			

7.MP. 3	Construct viable arguments and critique the reasoning of others. Mathematically proficient students construct mathematical arguments (explain the reasoning underlying a strategy, solution, or conjecture) using concrete, pictorial, or symbolic referents. Arguments may also rely on definitions, assumptions, previously established results, properties, or structures. Mathematically proficient students make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. Mathematically proficient students present their arguments in the form of representations, actions on those representations, and explanations in words (oral or written). Students critique others by affirming or questioning the reasoning of others. They can listen to or read the reasoning of others, decide whether it makes sense, ask questions to clarify or improve the reasoning, and validate or build on it. Mathematically proficient students can communicate their arguments, compare them to others, and reconsider their own arguments in response to the critiques of others.	Applied throughout.
7.MP. 4	Model with mathematics. Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. When given a problem in a contextual situation, they identify the mathematical elements of a situation and create a mathematical model that represents those mathematical elements and the relationships among them. Mathematically proficient students use their model to analyze the relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.	Applied throughout.
7.MP. 5	Use appropriate tools strategically. Mathematically proficient students consider available tools when solving a mathematical problem. They choose tools that are relevant and useful to the problem at hand. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful; recognizing both the insight to be gained and their limitations. Students deepen their understanding of mathematical concepts when using tools to visualize, explore, compare, communicate, make and test predictions, and understand the thinking of others.	Applied throughout.

7.MP.6	Attend to precision. Mathematically proficient students clearly communuicate to others using appropriate mathematical terminology, and craft explanations that convey their reasoning. When making mathematical arguments about a solution, strategy, or conjecture, they describe mathematical relationships and connect their words clearly to their representations. Mathematically proficient students understand meanings of symbols used in mathematics, calculate accurately and efficiently, label quantities appropriately, and record their work clearly and concisely.
Look for and make use of structure. Mathematically proficient students use structure and patterns to assist in making connections among mathematical ideas or concepts when making sense of mathematics. Students recognize and apply general mathematical rules to complex situations. They are able to compose and decompose mathematical ideas and notations into familiar relationships. Mathematically proficient students manage their own progress, steping back for an overview and shifting perspective when needed.	
Look for and express regularity in repeated reasoning. Mathematically proficient students look for and describe regularities as they solve multiple related probbems. They formulate conjectures about what they notice and communicate observations with precision. While solving problems, students maintain overight of the process and continually evaluate the reasonableness of their results. This informs and strengthens their understanding of the structure of mathematics which leads to fluency.	
Applied throughout.	
A.MP.8 Applied throughout.	

