Sixth Grade Science Curriculum Altenburg Public School

	Physical Science	
6-8.PS1.A.1	Develop models to describe the atomic composition of simple molecules and extended structures.	TSW describe the atomic composition of molecules, classify elementary substances and compounds using chemical formulas, and classify elementary substances and compounds using models.
6-8.PS1.A.2	Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.	TSW compare physical and chemical changes in soapmaking and food flavors.
6-8.PS1.A.4	Develop a model that describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.	TSW identify how particle motion affect temperature and pressure, changes of state of motion, and affects on temperature and pressure.
6-8.PS1.B.1	Develop and use a model to describe how the total number of atoms remains the same during a chemical reaction and thus mass is conserved.	TSW count atoms and molecules in chemical reactions, and calculate amounts of reactants or products in chemical reactions.
6-8.PS2.A.1	Apply physics principles to design a solution that minimizes the force of an object during a collision and develop an evaluation of the solution.	TSW predict forces using Newton's third law
6-8.PS2.A.2	Plan and conduct an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on	TSW identify whether objects are accelerating, how mass affect force and acceleration, and balanced and unbalanced forces.

	the object and the mass of the object.	
6-8.PS2.B.1	Analyze diagrams and collect data to determine the factors that affect the strength of electric and magnetic forces.	TSW compare magnitudes of magnetic forces.
6-8.PS2.B.2	Create and analyze a graph to use as evidence to support the claim that gravitational interactions depend on the mass of interacting objects.	TSW identify changes in gravitational potential energy.
6-8.PS3.A.1	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.	TSW use tables and graphs to identify patterns about kinetic energy.
6-8.PS3.A.2	Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.	TSW identify changes in gravitational potential energy.
6-8.PS3.A.3	Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.	TSW predict heat flow and temperature changes, and compare thermal energy transfers.
6-8.PS3.A.4	Plan and conduct an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the temperature of the sample.	TSW identify how particle motion affect temperature.
6-8.PS3.B.1	Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.	TSW explore how energy transformations affect roller coaster rides and bike rides.
6-8.PS4.A.1	Use mathematical representations to describe a	TSW compare amplitudes, wavelengths, and frequencies

6-8.PS4.A.2	simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. Develop and use a model to describe that waves are reflected, absorbed, or	of waves, and compare energy of waves. TSW explore transmission, reflection, and absorption of waves.
	materials.	
	Life Sciences	
6-8.LS1.A.1	Provide evidence that organisms (unicellular and multicellular) are made of cells and that a single cell must carry out all of the basic functions of life.	TSW explore different plant and animal cells.
6-8.LS1.A.2	Develop and use a model to describe the function of a cell as a whole and ways parts of the cells contribute to that function.	TSW identify functions of animal and plant cell parts, and label animal and plant cells.
6-8.LS1.A.3	Develop an argument supported by evidence for how multicellular organisms are organized by varying levels of complexity; cells, tissue, organs, organ systems.	TSW identify the human circulatory systems and label the human heart.
6-8.LS1.B.1	Construct an explanation for how characteristic animal behaviors as well as specialized plant structures affect the probability of successful reproduction of animals and plants respectively.	TSW explore how animal behaviors affect reproductive success and identify evidence to support a claim.
6-8-LS1.B.1	Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.	TSW how genes and the environment affect plant growth in both inherited and acquired traits.
6-8.LS1.C.1	Construct a scientific explanation based on	TSW identify the photosynthetic organism and

6-8.LS2.A.1	evidence for the role of photosynthesis and cellular respiration in the cycling of matter and flow of energy into and out of organisms. Analyze and interpret data to provide evidence for the effects of resource availability on individual organisms and populations of organisms in an ecosystem.	how plants use and change energy. TSW use food chains to predict changes in populations.
6-8.LS2.A.2	Construct an explanation that predicts the patterns of interactions among and between the biotic and abiotic factors in a given ecosystem.	TSW classify symbiotic relationships.
6-8.LS2.B.1	Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.	TSW interpret food webs and how matter move in food chains.
6-8.LS2.C.1	Construct an argument supported by empirical evidence that explains how changes to physical or biological components of an ecosystem affect populations.	TSW use food chains to predict changes in populations, and investigate primary succession on a volcanic island
6-8.LS2.C.2	Evaluate benefits and limitations of differing design solutions for maintaining an ecosystem.	TSW evaluate coral reef biodiversity and human uses.
6-8.LS4.A.1	Analyze and interpret evidence from the fossil record to infer patterns of environmental change resulting in extinction and changes to life forms throughout the history of the Earth.	TSW compare fossils to modern organisms and compare ages of fossils in a rock sequence.
6-8.LS4.B.1	Construct an explanation based on evidence that	TSW compare fossils to modern organisms.

	describes how genetic	
	variations of traits in a	
	population increase some	
	individuals' probability of	
	surviving and reproducing in	
	a specific environment.	
6-8.LS4.C.1	Interpret graphical	TSW explore natural selection
	representations to support	and construct explanations of
	explanations of how natural	natural selection.
	selection may lead to	
	increases and decreases of	
	specific traits in populations	
	over time.	
	Earth and Space Sciences	
6-8.ESS1.A.1	Develop and use a model of	TSW analyze models of the
	the Earth-sun-moon system	Earth-Sun-Moon system and
	to explain the cyclic patterns	identify phases of the Moon.
	of lunar phases and eclipses	
	of the sun and moon.	
6-8.ESS1.A.2	Develop and use a model of	TSW explore what causes the
	the Earth-sun system to	seasons on Earth.
	explain the cyclical pattern of	
	seasons, which includes the	
	Earth's tilt and directional	
	angle of sunlight on different	
	areas of Earth across the year.	
6-8.ESS1.B.1	Analyze and interpret data to	TSW analyze data to compare
	determine scale properties of	properties of planets.
	objects in the solar system.	
6-8.ESS1.C.1	Construct a scientific	TSW compare ages of fossils
	explanation based on	in a rock sequence.
	evidence from rock strata for	
	how the geologic time scale is	
	used to organize Earth's	
	history.	
6-8.EE2.A.1	Develop and use a model to	TSW classify rocks as igneous.
	illustrate that energy from	sedimentary. or
	the Earth's interior drives	metamorphic, and label parts
	convection which cycles	of a rock cycle diagram.
	Earth's crust leading to	
	melting, crystallization	
	weathering and deformation	
	of large rock formations.	

	including generation of ocean sea floor at ridges, submergence of ocean sea floor at trenches, mountain building and active volcanic chains.	
6-8.ESS2.A.2	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.	TSW label Earth layers, label features and describe tectonic plate boundaries.
6-8.ESS2.B.1	Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.	TSW label Earth features at tectonic plate boundaries and describe tectonic plate boundaries around the world.
6-8.ESS2.C.1	Design and develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.	TSW label parts of water cycle diagrams.
6-8.ESS2.C.2	Research, collect, and analyze data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.	TSW explore air masses, identify and compare air masses, and explain how air masses form.
6-8-ESS2.C.3	Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.	TSW identify factors affecting climate caused by latitude and distance from the ocean.
6-8.ESS3.B.1	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.	TSW analyze natural hazard maps.

6-8.ESS3.C.1	Analyze data to define the	TSW evaluate claims about
	relationship for how	natural resources in
	increases in human	groundwater and fossil fuels.
	population and per-capita	
	consumption of natural	
	resources impact Earth's	
	systems.	
6-8.ESS3.C.2	Apply scientific principles to	TSW explore problems with
	design a method for	coral reef biodiversity and
	monitoring and minimizing a	human uses and evaluate
	human impact on the	solutions.
	environment.	
6-8.ESS3.D.1	Analyze evidence of the	TSW evaluate the use of fossil
	factors that have caused the	fuels and the greenhouse
	change in global	effect.
	temperatures over the past	
	century.	
Engineerir	ng, Technology, and Application	of Science
6-8.ETS1.A.1	Define the criteria and	TSW identify parts of the
	constraints of a design	engineering-design process,
	problem with sufficient	explore the
	precision to ensure a	engineering-design process
	successful solution, taking	of going to the Moon, and
	into account relevant	evaluate solutions on coral
	scientific principles and	reef biodiversity and human
	potential impacts on people	uses.
	and the natural environment	
	that may limit possible	
	solutions.	
6-8.ETS1.B.1	Evaluate competing design	TSW will evaluate tests of
	solutions using a systematic	engineering-design process.
	process to determine how	
	well they meet the criteria	
	and constraints of the	
	problem.	
6-8.ETS1.B.2	Analyze data from tests to	TSW use date from tests to
	determine similarities and	compare engineering-design
	differences among several	solutions.
	design solutions to identify	
	the best characteristics of	
	each that can be combined	
	into a new solution to better	
	meet the criteria for success.	

6-8.ESTS.B.3	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	TSW explore the engineering-design process of going to the Moon.
--------------	--	--