Teacher: Ericka R. Woodson Week of: 4/07/2025-4/11/2025 Subject: 7th Grade- Life Science Period: 1st-6th

reacher.	Ericka R. Woodson	Week or: 4/07/2025~4/1		2023	Subject: 7th Grade- Life Sci		e renou:	1st~6th	
	OBJECTIVES	ACTIVITIES		RESOURCES	HOMEWORK		EVALUATION	STANDARDS	
MON	The student will learn about Ecosystems: Interactions, Energy, & Dynamics • Matter & Energy Flow • Population Dynamics • Interdependent Relationships • Biodiversity	Bell Ringer: List five ways species in a community interact. Ch.21.3-Lesson Review	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Textbook Laboratory Experience Video Slides / Pictures Assessment Handout / Worksheet Chart / Graph Map / Model Chromebook/Computer PowerPoint Other:	Complete any incomplete work.	\frac{1}{\sqrt{1}}	Oral Responses Homework Notebook Quiz Major Test Project/Report/Presentation Daily Work Observation Worksheet/Handout Lab/ Lab Composition Class/Group Participation	S6. Analyze and interpret data to predict how environmental conditions, genetic factors, and resource availability will impact the growth of individual organisms and populations of organisms in an ecosystem. S7. Analyze and interpret data to explain how density-independent and density-dependent limiting factors in an ecosystem can lead to shifts in populations. S8. Construct an explanation that predicts patterns of interactions between and among organisms in different ecosystems. S9. Design a solution to maintain biodiversity and ecosystem services in a given scenario. Examples: considering economic and social factors when making decisions about purifying water, recycling nutrients, preventing soll erosion, improving conditions for threatened and endangered species S10. Obtain, evaluate, and communicate information about characteristic animal behaviors and specialized plant structures and their effect on the probability of successful reproduction. Examples: building nest to protect young from cold, flower characteristics that attract pollinators	
TUE	The student will learn about Ecosystems: Interactions, Energy, & Dynamics • Matter & Energy Flow • Population Dynamics • Interdependent Relationships • Biodiversity	Bell Ringer: What is a cooperative relationship? Ch. 21 Study Guide & Review	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Textbook Laboratory Experience Video Slides / Pictures Assessment Handout / Worksheet Chart / Graph Map / Model Chromebook/Computer PowerPoint Other:	Complete any incomplete work.	\frac{1}{\sqrt{1}}	Oral Responses Homework Notebook Quiz Major Test Project/Report/Presentation Daily Work Observation Worksheet/Handout Lab/ Lab Composition Class/Group Participation	S6. Analyze and interpret data to predict how environmental conditions, genetic factors, and resource availability will impact the growth of individual organisms and populations of organisms in an ecosystem. S7. Analyze and interpret data to explain how density-independent and density-dependent limiting factors in an ecosystem can lead to shifts in populations. S8. Construct an explanation that predicts patterns of interactions between and among organisms in different ecosystems. S9. Design a solution to maintain biodiversity and ecosystem services in a given scenario. Examples: considering economic and social factors when making decisions about purifying water, recycling nutrients, preventing soil erosion, improving conditions for threatened and endangered species S10. Obtain, evaluate, and communicate information about characteristic animal behaviors and specialized plant structures and their effect on the probability of successful reproduction. Examples: building nest to protect young from cold, flower characteristics that attract pollinators	
WED	The student will learn about Ecosystems: Interactions, Energy, & Dynamics • Matter & Energy Flow • Population Dynamics • Interdependent Relationships • Biodiversity	Bell Ringer: What is a symbiotic relationship? Ch 21 Standardized Test Practice LAB PREP	\(\sqrt{1} \)	Textbook Laboratory Experience Video Slides / Pictures Assessment Handout / Worksheet Chart / Graph Map / Model Chromebook/Computer PowerPoint Other:	Complete any incomplete work.	\frac{1}{\sqrt{1}}	Oral Responses Homework Notebook Quiz Major Test Project/Report/Presentation Daily Work Observation Worksheet/Handout Lab/ Lab Composition Class/Group Participation	86. Analyze and interpret data to predict how environmental conditions, genetic factors, and resource availability will impact the growth of individual organisms and populations of organisms in an ecosystem. 57. Analyze and interpret data to explain how density-independent and density-dependent limiting factors in an ecosystem can lead to shifts in populations. 58. Construct an explanation that predicts patterns of interactions between and among organisms in different ecosystems. 59. Design a solution to maintain biodiversity and ecosystem services in a given scenario. Examples: considering economic and social factors when making decisions about purifying water, recycling nutrients, preventing soil erosion, improving conditions for threatened and endangered species 510. Obtain, evaluate, and communicate information about characteristic animal behaviors and specialized plant structures and their effect on the probability of successful reproduction. Examples: building nest to protect young from cold, flower characteristics that attract pollinators	

THUR	The student will learn about Ecosystems: Interactions, Energy, & Dynamics • Matter & Energy Flow • Population Dynamics • Interdependent Relationships • Biodiversity	Bell Ringer: What are the different types of consumers? LAB: How can you model a symbiotic relationship?	V V	Textbook Laboratory Experience Video Slides / Pictures Assessment Handout / Worksheet Chart / Graph Map / Model Chromebook/Computer PowerPoint Other:	Complete any incomplete work.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Oral Responses Homework Notebook Quiz Major Test Project/Report/Presentation Daily Work Observation Worksheet/Handout Lab/ Lab Composition Class/Group Participation	S6. Analyze and interpret data to predict how environmental conditions, genetic factors, and resource availability will impact the growth of individual organisms and populations of organisms in an ecosystem. S7. Analyze and interpret data to explain how density-independent and density-dependent limiting factors in an ecosystem can lead to shifts in populations. S8. Construct an explanation that predicts patterns of interactions between and among organisms in different ecosystems. S9. Design a solution to maintain biodiversity and ecosystem services in a given scenario. Examples: considering economic and social factors when making decisions about purifying water, recycling nutrients, preventing soil erosion, improving conditions for threatened and endangered species S10. Obtain, evaluate, and communicate information about characteristic animal behaviors and specialized plant structures and their effect on the probability of successful reproduction. Examples: building nest to protect young from cold, flower characteristics that attract pollinators
FRI	The student will learn about Ecosystems: Interactions, Energy, & Dynamics • Matter & Energy Flow • Population Dynamics • Interdependent Relationships • Biodiversity	Bell Ringer: Identify a producer, an herbivore, a carnivore, and an omnivore?	\(\frac{1}{2} \)	Textbook Laboratory Experience Video Slides / Pictures Assessment Handout / Worksheet Chart / Graph Map / Model Chromebook/Computer PowerPoint Other:	Complete any incomplete work.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Oral Responses Homework Notebook Quiz Major Test Project/Report/Presentation Daily Work Observation Worksheet/Handout Lab/ Lab Composition Class/Group Participation	S6. Analyze and interpret data to predict how environmental conditions, genetic factors, and resource availability will impact the growth of individual organisms and populations of organisms in an ecosystem. S7. Analyze and interpret data to explain how density-independent and density-dependent limiting factors in an ecosystem can lead to shifts in populations. S8. Construct an explanation that predicts patterns of interactions between and among organisms in different ecosystems. S9. Design a solution to maintain biodiversity and ecosystem services in a given scenario. Examples: considering economic and social factors when making decisions about purifying water, recycling nutrients, preventing soil erosion, improving conditions for threatened and endangered species S10. Obtain, evaluate, and communicate information about characteristic animal behaviors and specialized plant structures and their effect on the probability of successful reproduction. Examples: building nest to protect young from cold, flower characteristics that attract pollinators