Math Competencies- Grade 4		
Lin-Wood Proficiencies (COMPETENCY)	I Can Statements	Standards
Numbers \& Operations in Base 10 Students will demonstrate an understanding of place values by explaining whole numbers, number names, place values, rounding, and comparing numbers.	1. I can explain the relationship between place-values by multiplying by ten to move one place value to the left and by dividing by ten to move one place value to the right. 2. I can read whole numbers using word, expanded, and standard forms. 3. I can write whole numbers using word, expanded, and standard forms. 4. I can compare two multi-digit numbers using $>$, $=$, and < symbols. 5. I can round numbers to any given place value up to one million.	$\frac{\text { 4.NBT.A. } 1}{\text { 4.NBT.A. } 2}$
Numbers \& Operations in Base 10 Students will demonstrate an understanding of adding and subtracting multi-digit whole numbers by adding and subtracting numbers using the standard algorithm. and Students will demonstrate an understanding of multiplying two two-digit numbers and of multiplying and dividing whole numbers of up to four digits by a one-digit whole number multiply two two-digit numbers, using multiple strategies based on place value and properties of operations.	1. I can add and subtract multi-digit whole numbers using the standard algorithm with ease. 2. I can multiply a multi-digit number (up to four digits) by a single-digit whole number using a variety of strategies. 3. I can multiply two two-digit numbers using a variety of strategies. 4. I can divide a multi-digit number (up to four digits) by a single digit whole number using a variety of strategies. 5. I can show the relationship between multiplication and division using arrays, area models, and/or equations.	$\frac{4 . \text { NBT.B. } 4,}{4 . \text { NBT.B. } 5}$ 4.NBT.B. 6
Operations \& Algebraic Thinking Students will demonstrate an	1. I can understand that multiplication can be seen as a comparison of two groups (24 is 4 groups of six and 24 is 6 groups of four).	$\begin{aligned} & \text { 4.OA.A. } 1 \\ & \text { 4.OA.A. } 2 \\ & \text { 4.OA.A.3 } \end{aligned}$

understanding of solving for an unknown quantity, represented by a variable, by solving word problems using the four operations, including multi-step, those in which the remainder must be interpreted, and those involving multiplicative comparison.	2. I can tell which quantity is being multiplied and which quantity is telling how many times, given a multiplicative comparison situation. 3. I can write equations for multiplicative comparison contextual situations. 4. I can solve word problems involving multiplication and division using visual models and equations; using a variable for the unknown quantity. 5. I can tell when they should add or when they should multiply when solving a problem. 6. I can solve multi-step problems with all four operations and use a variable for the unknown quantity. 7. I can interpret any remainder based on the context of a given problem. 8. I can use mental math, estimation, and rounding strategies to see if the answer is reasonable.	
Operations \& Algebraic Thinking Students will demonstrate an understanding of algebra patterns and concepts by finding factor pairs for a given number (up to 100), knowing if a number is prime, composite, or neither, and in creating, extending, and identifying patterns in a given rule.	1. I can find all factor pairs for any whole number up to 100. 2. I can check a number to see if it is a multiple of a given single digit number. 3. I can determine if a whole number from 1 to 100 is prime or composite. 4. I can create/extend a number pattern that follows a given rule. 5. I can create/extend a shape pattern that follows a given rule. 6. I can notice and point out different features in a pattern not stated in the given rule.	$\begin{aligned} & \text { 4.OA.B. } 4 \\ & \text { 4.OA.C.5 } \end{aligned}$
Number \& OperationsFractions Students will demonstrate an understanding of comparing fractions through a variety of strategies to describe equivalency or not, justifying their conclusions, and record the results with the symbols <, =, >.	1. I can use visual models, words, and numbers to show/explain why fractions are equivalent. 2. I can generate a rule for finding equivalent fractions. 3. I can recognize equivalent fractions. 4. I can understand that fraction comparisons need to refer to the same whole. 5. I can compare two fractions by creating common numerators or common denominators. 6. I can compare two fractions using benchmark fractions. 7. I can compare fractions using the symbols $<,=$, and $>$.	$\begin{aligned} & \text { 4.NF.A. } 1 \\ & \text { 4.NF.A. } 2 \end{aligned}$
Number \& Operations-Fractions Students will demonstrate an	1. I can add fraction units to get a fraction greater than one. 2. I can understand that one can add and subtract fractions with the	$\frac{\text { 4.NF.B.3, }}{\text { 4.NF.B.3.A }}$

understanding of adding, subtracting fractions and mixed numbers with common denominators and of multiplying a whole number by a fraction, using visual models and equations, in numerical and word problems.	same whole (denominator). 3. I can decompose fractions less than one into fractional parts with the same denominator using visual models, words, or numbers. 4. I can decompose mixed numbers and fractions equal to or greater than one into fractional parts with the same denominator, using visual models, words, or numbers. 5. I can replace mixed numbers with an equivalent fraction greater than one. 6. I can add and subtract mixed numbers with like denominators. 7. I can solve word problems involving addition and subtraction of fractions using visual models and equations. 8. I can use multiplication understandings to multiply a fraction by a whole number. 9. I can multiply a fraction by a whole number using visual models and equations. 10. I can explain how a / b is a multiple of $1 / b$ using visual models and numbers. 11. I can solve word problems involving multiplication of a fraction by a whole number using visual models and numbers. 12. I can rename a fraction with a denominator of 10 as an equivalent fraction with a denominator of 100. 13. I can recognize that two fractions with unlike denominators can be equivalent. 14. I can add two fractions, one with a denominator of 10 and one with a denominator of 100 .	$\begin{aligned} & \frac{4 . \mathrm{NF} \cdot \mathrm{~B} \cdot 3 \cdot \mathrm{~B}}{\text { 4.NF.B.3.C }} \\ & \frac{\text { 4.NF.B.3.D }}{4 . \mathrm{NF} \cdot \mathrm{~B} \cdot 4} \\ & \frac{\text { 4.NF.B.4.A }}{\text { 4.NF.B.4.B }} \\ & \frac{\text { 4.NF.B.4.C }}{4 . \mathrm{NF} \cdot \mathrm{C} \cdot 5} \end{aligned}$
Number \& OperationsFractions Students will demonstrate an understanding of decimals by explaining decimal notation, renaming fractions as decimals, decimal size comparisons, and solving decimal word problems.	1. I can write a fraction with a denominator of 10 or 100 as a decimal. 2. I can locate a decimal on a number line. 3. I can understand that decimal comparisons need to refer to the same whole. 4. I can use visual models to compare two decimals. 5. I can compare two decimals (to hundredths) using $<,=$, and $>$ symbols.	$\frac{\text { 4.NF.C.6, }}{4 . N F . C .7}$
Measurement \& Data Students will demonstrate an understanding of measurement by completing and describing non-metric and metric measurements, solving measurement problems using formulas and solving problems involving time.	1. I can explain the relative sizes of units within the same system of measurement. 2. I can change larger units into smaller units within the same system of measurement. 3. I can record measurement equivalence within a system in a two column table. 4. I can represent measurement quantities using diagrams such as a number line with a measurement scale. 5. I can use the four operations to solve measurement word	$\frac{\frac{4 . M D \cdot A .1}{4 . M D \cdot A .2}}{\frac{4 . M D \cdot A .3}{3}}$

	problems, including those with simple fraction or decimal measures. 6. I can use the four operations to solve measurement word problems, including those that require expressing measurements in a larger unit in terms of a smaller unit. 7. I can apply the formula for the perimeter of a rectangle to solve real world and number problems. 8. I can •Apply the formula for the area of a rectangle to solve real world and number problems.	
Measurement \& Data Students will demonstrate an understanding of line plots by describing and creating line plots, values on a plot, fraction plotting, and answering line plot questions.	1. I can create a line plot to display a data set of measurements given in fractions of a unit. 2. I can use information from a line plot to solve problems which may involve fractional measurements.	4.MD.B. 4
Measurement \& Data AND Geometry Students will demonstrate an understanding of lines (including parallel, perpendicular, and line of symmetry), angles, and shapes by describing, constructing, and identifying angles, twodimensional figures, and classifying two-dimensional figures.	1. I can understand that angles are formed when two rays share an endpoint. 2. I can understand that an angle is a fraction of a circle. 3. I can understand the concept of angle measurement as degrees within a circle (1 circle $=360$ degrees). 4. I can explain how an angle is measured by its reference to a circle. 5. I can understand how angles are measured in degrees. 6. I can measure angles (in whole degrees) using a protractor. 7. I can use a protractor to help sketch an angle to a specified measure. 8. I can understand that an angle can be decomposed into smaller non-overlapping parts (angles). 9. I can understand that the angle measure of the whole is the sum of the measures of its parts. 10. I can solve real world and number problems involving addition and subtraction to find unknown angles on a diagram. 11. I can draw (and label) points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. 12. I can identify points, lines, line segments, rays, angles (right, acute, obtuse), and parallel and perpendicular lines in two dimensional figures.	$\begin{aligned} & \frac{4 . \mathrm{MD} \cdot \mathrm{C} \cdot 5}{4 . \mathrm{MD} \cdot \mathrm{C} \cdot 5 \cdot \mathrm{~A}} \\ & \frac{\text { 4.MD.C. } 5 . B}{4 . M D \cdot C \cdot 6} \\ & \frac{\text { 4.MD.C. } 7}{} \\ & \frac{\text { 4.G.A. } 1}{\text { 4.G.A. } 2} \\ & \text { 4.G.A. } 3 \end{aligned}$

	13. I can identify right angles. 14. I can identify right triangles. 15. I can classify two-dimensional figures based on paralle or perpendicular lines and sizes of angles. 16. I can recognize a line of symmetry as a line across a figure when folded so that each half matches the other. 17. I can identify a line of symmetry for a two-dimensional figure. 18. I can draw a line of symmetry for a two-dimensional figure.	

