

	TERM 1
Term 1 Dates	MS College and Career Readiness Standards
WK 1:	PHY.1.1 Investigate and analyze evidence gained through observation or experimental design regarding the one-dimensional (1-D) motion of objects. Design and conduct
1008 0 10	experiments to generate and interpret graphical evidence of distance, velocity, and
	acceleration through motion.
ννκ. 2. Δυσ.10.22	time or acceleration vs. time graphs (e.g. free-falling objects)
Aug 19-23	PHY.1.3 Use mathematical and computational analysis to solve problems using kinematic
	equations.
	PHY.1.4 Use graphical analysis to derive kinematic equations.
	Unit Assessment 1
WK 3:	PHY.1.5 Differentiate and give examples of motion concepts such as
Aug 26-30	distance-displacement, speed, velocity, and acceleration.
	PHY.1.6 Design and mathematically/graphically analyze quantitative data to explore
	displacement, velocity, and acceleration of various objects. Use probe systems, video
WK 4:	analysis, graphical analysis software, digital spreadsheets, and/or online simulations.
Sept 2-6	PHY.1.7 Design different scenarios, and predict graph shapes for distance/time,
	velocity/time, and acceleration/time graphs.
	PHY.1.8 Given a 1D motion graph students should replicate the motion predicted by the graph
	Mid-Term or Unit Assessment 2 WK 4.5/WK 5
WK 5-6	PHY.2.1 Identify forces acting on a system by applying Newton's laws mathematically and
Sept 9-20	graphically (e.g., vector and scalar quantities).
	PHY.2.2 Use models such as free-body diagrams to explain and predict the motion of an object according to Newton's law of motion, including circular motion
	DHV 2 3 Use mathematical and graphical techniques to solve vector problems and find net
	forces acting on a body using free-body diagrams and/or online simulations.
WK 7:	PHY.2.4 Use vectors and mathematical analysis to explore the 2D motion of objects. (i.e.
Sept 23-27	projectile and circular motion).
	PHY.2.5 Use mathematical and computational analysis to derive simple equations of
	motion for various systems using Newton's second law (e.g. net force equations).
	PHY.2.6 Use mathematical and computational analysis to explore forces (e.g., friction,
	force applied, normal, and tension).
	Unit Assessment 3 optional due to BMA
WK 8:	Review for benchmark

Sept 30- Oct 4	
WK 9:	Benchmark or Unit Assessment
Oct 7-11	

TERM 1	
Recurring Standards	
Sta	ndards taught the first 4-5 weeks; the mid-term data will indicate the remediation needed.
WK 5:	PHY.1.1 & PHY.1.2
Sept 9-13	
WK 6:	PHY.1.3 & PHY.1.4
Sept 16-20	
WK 7:	PHY.1.5 & PHY.1.6
Sept 23-27	

	TERM 2
Term 2 Dates	MS College and Career Readiness Standards
WK 1:	PHY.2.7 Analyze real-world applications to draw conclusions about Newton's three laws of
Oct 14-18	motion using online simulations, probe systems, and/or laboratory experiences.
	PHY.2.8 Design an experiment to determine the forces acting on a stationary object on an
	inclined plane. Test your conclusions.
	PHY.2.9 Draw diagrams of forces applied to an object, and predict the angle of incline that
WK 2:	will result in unbalanced forces acting on the object.
Oct 21-25	PHY.2.10 Apply the effects of the universal gravitation law to generate a digital/physical
	graph, and interpret the forces between two masses, acceleration due to gravity, and
	planetary motion (e.g., situations where g is constant, as in falling bodies).
	PHY.2.11 Explain centripetal acceleration while undergoing uniform circular motion to
	explore Kepler's third law using online simulations, models, and/or probe systems.
	Unit Assessment 1
WK 3:	PHY.3.1 Use mathematical and computational analysis to qualitatively and quantitatively
Oct 28- Nov 1	analyze the concept of work, energy, and power to explain and apply the conservation of
	energy.
	PHY.3.2 Use mathematical and computational analysis to explore conservation of momentum and impulse
	NUX 2.2 Through real world applications, draw conclusions about machanical notantial
Nov 4-8	energy and kinetic energy using online simulations and (or laboratory experiences
1107 4 0	energy and kinetic energy using online simulations and/or laboratory experiences.
	PHY.3.4 Design and conduct investigations to compare conservation of momentum and
	conservation of kinetic energy in perfectly inelastic and elastic collisions using probe
	systems, online simulations, and/or laboratory experiences.
	PHY.3.9 Explore the kinetic theory in terms of kinetic energy of ideal gasses using digital
	resources.
	PHY.3.10 Enrichment: Research the efficiency of everyday machines (e.g., automobiles,
	hair dryers, refrigerators, and washing machines).
	PHY.3.11 Enrichment: Use an engineering design process to design and build a themed
	Rube Goldberg type machine that has six or more steps and complete a desired task (e.g.,
	pop a balloon, fill a bottle, shoot a projectile, or raise an object 35 cm) within an allotted
	time. Include a poster that demonstrates the calculations of the energy transformation or
	efficiency of the machine.*
	Mid-term OR Unit Assessment 2 WK 4.5/ WK 5
WK 5:	PHY.3.5 Investigate, collect data, and summarize the principles of thermodynamics by
Nov 11-15	exploring how heat energy is transferred from higher temperature to lower temperature
	until equilibrium is reached.

WK 6: Nov 18-22	 PHY.3.6 Enrichment: Design, conduct, and communicate investigations that explore how temperature and thermal energy relate to molecular motion and states of matter. PHY.3.7 Enrichment: Use mathematical and computational analysis to analyze problems
WK 7:	involving specific heat and heat capacity.
Dec 2-6	PHY.3.8 Enrichment: Research to compare the first and second laws of thermodynamics as related to heat engines, refrigerators, and thermal efficiency.
	Unit Assessment 3 optional due to BMA
WK 8:	Review for benchmark
Dec 9-13	
WK 9:	Benchmark OR Unit Assessment
Dec 16-20	

TERM 2	
Recurring Standards Standards taught the first 4-5 weeks: the mid-term data will indicate the remediation needed	
WK 5: Nov 11-15	PHY.2.7, PHY.2.8 & PHY.2.9
WK 6: Nov 18-22	PHY.2.10 & PHY.2.11
WK 7: Dec 2-6	PHY.3.1 & PHY.3.2

TERM 3	
Term 3 Dates	MS College and Career Readiness Standards
WK 1:	PHY.4.1 Analyze the characteristics and properties of simple harmonic motions, sound,
Jan 6-10	and light.
	PHY.4.2 Describe and model through digital or physical means the characteristics and
	harmonic motion.
	PHY.4.3 Use mathematical and computational analysis to explore wave characteristics
WK 2:	(e.g., velocity, period, frequency, amplitude, phase, and wavelength).
Jan 13-17	PHY.4.4 Investigate and communicate the relationship between the energy of a wave in
	terms of amplitude and frequency using probe systems, online simulations, and/or
	PHY.4.5 Design investigate and collect data on standing waves and waves in specific
	media (e.g., stretched string, water surface, and air) using online simulations, probe
	systems, and/or laboratory experiences.
Unit Assessment 1	
WK 3:	PHY.4.6 Explore and explain the Doppler effect as it relates to a moving source and to a
Jan 20-24	moving observer using online simulations, probe systems, and/or real-world experiences.
	PHY.4.7 Explain the laws of reflection and refraction, and apply Snell's law to describe the
	relationship between the angles of incidence and refraction.
lan 27-31	involving object distance from lenses, using a lens bench, online simulations, and/or
501127 51	laboratory experiences.
	PHY.4.9 Research the different bands of electromagnetic radiation, including
	characteristics, properties, and similarities/differences.
	Mid-term OR Unit Assessment 2 WK 4.5/ WK 5
WK 5:	PHY.4.10 Enrichment: Research the ways absorption and emission spectra are used to
Feb 3-7	study astronomy and the formation of the universe.
	PHY.4.11 Enrichment: Research digital non-fictional text to defend the wave-particle duality of light (i.e., wave model of light and particle model of light)
	PHY.4.12 Enrichment: Research uses of the electromagnetic spectrum or photoelectric
	effect.
WK 6-7:	PHY.5.1 Analyze and explain electricity and the relationship between electricity and
Feb 10-21	magnetism.
	PHY.5.2 Explore the characteristics of static charge and how a static charge is generated using cimulations
	טאווא אווועומנוטווג.

WK 8:	PHY.5.3 Use mathematical and computational analysis to analyze problems dealing with
Feb 24-28	electric field, electric potential, current, voltage, and resistance as related to Ohm's law.
	PHY.5.4 Develop and use models (e.g., circuit drawing and mathematical representation)
	to explain how electric circuits work by tracing the path of electrons, including concepts
	of energy transformation, transfer, conservation of energy, electric charge, and resistance
	using online simulations, probe systems, and/or laboratory experiences.
Unit Assessment 3 optional due to BMA	
WK 9:	BMA OR Unit Assessment
March 3-7	

TERM 3	
Recurring Standards Standards taught the first 4-5 weeks: the mid-term data will indicate the remediation needed	
WK 5:	PHY.4.1, PHY.4.2 & PHY.4.3
Feb 3-7	
WK 6:	PHY.4.4 & PHY.4.5
Feb 10-14	
WK 7:	PHY.4.6 & PHY.4.7
Feb 17-21	

TERM 4	
Term 4 Dates	MS College and Career Readiness Standards
WK 1:	PHY.5.5 Design and conduct an investigation of magnetic poles, magnetic flux and
March 17-21	magnetic field using online simulations, probe systems, and/or laboratory experiences.
	PHY.5.6 Use schematic diagrams to analyze the current flow in series and parallel electric
	circuits, given the component resistances and the imposed electric potential.
WK 2:	PHY.5.7 Analyze and communicate the relationship between magnetic fields and electrical
March 24-28	current by induction, generators, and electric motors (e.g., microphones, speakers,
	generators, and motors) using Ampere's and Faraday's laws.
Unit Assessment 1	
WK 3:	PHY.6.1 Analyze and explain the concepts of nuclear physics.
March 31-	PHY.6.2 Explore the mass number and atomic number of the nucleus of an isotope of a
April 4	given chemical element.
WK 4:	PHY.6.3 Investigate the conservation of mass and the conservation of charge by writing
April 7-11	and balancing nuclear decay equations for alpha and beta decay.
	PHY.6.4 Simulate the process of nuclear decay using online simulations and/or laboratory
WK 5:	experiences and using mathematical computations determine the half-life of radioactive
April 14-18	isotopes.
Mid-term OR Unit Assessment 2 WK 4.5/ WK 5	
WK 6:	PHY.5.8 Enrichment: Design and construct a simple motor to develop an explanation of
April 21-25	how the motor transforms electrical energy into mechanical energy and work.
WK 7:	PHY.5.9 Enrichment: Design and draw a schematic of a circuit that will turn on/off a light
April 28- May 2	from two locations in a room like those found in most homes.
Unit Assessment 3 optional due to EOY	
WK 8:	Review for Assessment
May 5-9	
WK 9:	EOY Assessment
May 12-21	

TERM 4		
Recurring Standards		
Sta	Standards taught the first 4-5 weeks; the mid-term data will indicate the remediation needed.	
WK 5:	PHY.5.5, PHY.5.6 & PHY.5.7	
April 14-18		

WK 6:	PHY.6.1, PHY.6.2
April 21-25	
WK 7:	PHY.6.3 & PHY.6.4
April 28- May 2	