Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	6th	1	25 days

Unit Title: Growth, Development and Reproduction of Organisms

OVERVIEW OF UNIT:

Students use data and conceptual models to understand how the environment and genetic factors determine the growth of an individual organism. They connect this idea to the role of animal behaviors in animal reproduction and to the dependence of some plants on animal behaviors for their reproduction. Students provide evidence to support their understanding of the structures and behaviors that increase the likelihood of successful reproduction by organisms.

Big Ideas

- Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.
- There are a variety of ways that plants reproduce.
- Specialized structures for plants affect their probability of successful reproduction.
- Some characteristic animal behaviors affect the probability of successful reproduction in plants.
- Animals engage in characteristic behaviors that affect the probability of successful reproduction.
- There are a variety of characteristic animal behaviors that affect their probability of successful reproduction.
- There are a variety of animal behaviors that attract a mate.
- Successful reproduction of animals and plants may have more than one cause, and some cause-and-effect relationships in systems can only be described using probability.
- Genetic factors as well as local conditions affect the growth of organisms.
- A variety of local environmental conditions affect the growth of organisms.
- Genetic factors affect the growth of organisms (plant and animal).
- The factors that influence the growth of organisms may have more than one cause.
- Some cause-and-effect relationships in plant and animal systems can only be described using probability.

Essential Questions

- How do plants increase their odds of reproduction?
- How do characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants, respectively?
- What behaviors do animals engage in to increase reproduction?
- How do environmental and genetic factors influence the growth of organisms?

Objectives

- Students will be able to describe how plants and animals increase their odds of reproduction.
- Students will be able to categorize animal behaviors and plant structures that affect the probability of successful reproduction.
- Students will be able to describe environmental and genetic factors that can influence the growth of organisms.

Assessment

Formative Assessment:

- Labs
- Claim-Evidence- Reasoning
- Class Discussions

Summative Assessment:

- Multiple Choice Assessment
- Open Ended Response
- Claim-Evidence- Reasoning

Benchmark:

• Unit Assessments

Alternative:

- Performance Assessments
- Projects
- Models
- Modified Tests Independently Developed by Teacher

Key Vocabulary

Vascular, nonvascular, reproduction, behavior, pollination, hibernation, courtship, migration

Resources & Materials

Stemscopes website & kits

- Print and digital copies of textbook
- Lab write-ups
- SEP simulations
- Content videos
- PhET Interactive Simulations
- Reading articles
- Math connections
- Pre-assembled Kits

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

• Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build schema, watch videos, complete labs, take assessments and collect data.	
Standard Standard Description	

Standard	Standard Description
8.1.8.DA.1	Organize and transform data collected using computational tools to make it usable for
	a specific purpose.
8.2.8.ED.3	Develop a proposal for a solution to a real-world problem that includes a model (e.g.,
	physical prototype, graphical/technical sketch).

Interdisciplinary Integration

Activities:

- Students will be able to create a scientific explanation using evidence and reasoning from observation and informational text to support a scientific claim
- Students will be able to generate numerical data to represent observations and measurements used to write a scientific explanation.

Standard	Standard Description
NJSLS-ELA AW	Write arguments to support claims in an analysis of substantive topics or texts, using
	valid reasoning and relevant and sufficient evidence.
NJSLS-ELA	Write arguments on discipline-specific content (e.g., social studies, science, math,
W.AW.6.1	technical subjects, English/Language Arts) to support claims with clear reasons and
	relevant evidence.
NJSLS-ELA	Write informative/explanatory texts (including the narration of historical events,
W.IW.6.2	scientific procedures/ experiments, or technical processes) to examine a topic and
	convey ideas, concepts, and information through the selection, organization, and
	analysis of relevant content.
NJSLS-ELA	Write routinely over extended time frames (time for research, reflection,
W.RW.6.7	metacognition/self-correction, and revision) and shorter time frames (a single sitting
	or a day or two) for a range of discipline-specific tasks, purposes, and audiences.
6.SP.B.5	Summarize numerical data sets in relation to their context, such as by: a. Reporting
6.SP.B.5a	the number of observations. b. Describing the nature of the attribute under
6.SP.B.5b	investigation, including how it was measured and its units of measurement. c. Giving
6.SP.B.5c	quantitative measures of center (median and/or mean) and variability (interquartile
6.SP.B.5d	range and/or mean absolute deviation), as well as describing any overall pattern and
	any striking deviations from the overall pattern with reference to the context in which
	the data were gathered. d. Relating the choice of measures of center and variability to
	the shape of the data distribution and the context in which the data were gathered.

21st Century Life Skills Standards **Activities:**

Students will work in groups to collaborate, at times taking leadership roles to communicate project ideas to the whole class.

Standard	Student Learning Objectives
9.4.8.GCA.2	Demonstrate openness to diverse ideas and perspectives through active discussions
	to achieve a group goal.

Version Update: August 2025

9.4.8.IML.4	Ask insightful questions to organize different types of data and create meaningful
	visualizations.

Careers		
Activities:		
Students will crea	ate scientific explanations to describe observable phenomena in order to	
communicate finding	S.	
Practice	Description	
Consider the	Students understand the interrelated nature of their actions and regularly make	
environmental, social	decisions that positively impact and/or mitigate negative impact on other people,	
and economic impacts	organization, and the environment. They are aware of and utilize new technologies,	
of decisions.	understandings, procedures, materials, and regulations affecting the nature of their	
	work as it relates to the impact on the social condition, the environment and the	
	profitability of the organization.	
Act as a responsible	Students understand the obligations and responsibilities of being a member of a	
and contributing	community, and they demonstrate this understanding every day through their	
community members	interactions with others. They are conscientious of the impacts of their decisions on	
and employee.	others and the environment around them. They think about the near-term and	
	long-term consequences of their actions and seek to act in ways that contribute to	
	the betterment of their teams, families, community and workplace. They are	
	reliable and consistent in going beyond the minimum expectation and in	
	participating in activities that serve the greater good.	
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways,	
and innovation.	and they contribute those ideas in a useful and productive manner to improve their	
	organization. They can consider unconventional ideas and suggestions as solutions	
	to issues, tasks or problems, and they discern which ideas and suggestions will add	
	greatest value. They seek new methods, practices, and ideas from a variety of	
	sources and seek to apply those ideas to their own workplace. They take action on	
	their ideas and understand how to bring innovation to an organization.	
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the	
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the	
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is	
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through	
	this when they occur and take action quickly to address the problem; they	
	thoughtfully investigate the root cause of the problem prior to introducing	
	solutions. Their own actions or the actions of others.	
Model integrity, ethical	Students consistently act in ways that align personal and community-held ideals	
leadership and effective	and principles while employing strategies to positively influence others in the	
management.	workplace. They have a clear understanding of integrity and act on this	
	understanding in every decision. They use a variety of means to positively impact	
	the directions and actions of a team or organization, and they apply insights into	
	human behavior to change others' action, attitudes and/or beliefs. They recognize	

Version Update: August 2025 5

	the near-term and long-term effects that management's actions and attitudes can
	have on productivity, morals and organizational culture.
Use technology to	Students find and maximize the productive value of existing and new technology to
enhance productivity	accomplish workplace tasks and solve workplace problems. They are flexible and
increase collaboration	adaptive in acquiring new technology. They are proficient with ubiquitous
and communicate	technology applications. They understand the inherent risks-personal and
effectively.	organizational-of technology applications, and they take actions to prevent or
	mitigate these risks.
Work productively in	Students positively contribute to every team, whether formal or informal. They
teams while using	apply an awareness of cultural difference to avoid barriers to productive and
cultural/global	positive interaction. They find ways to increase the engagement and contribution of
competence.	all team members. They plan and facilitate effective team meetings.

	Standards			
Standard #	Standard Description	Student Learning Objective	Clarification Statement	
MS-LS1-4	From Molecules to	Use argument based on	Examples of behaviors that	
	Organisms: Structures	empirical evidence and	affect the probability of animal	
	and Processes	scientific reasoning to support	reproduction could include nest	
		an explanation for how	building to protect young from	
		characteristic animal behaviors	cold, herding of animals to	
		and specialized plant structures	protect young from predators,	
		affect the probability of	and vocalization of animals and	
		successful reproduction of	colorful plumage to attract	
		animals and plants respectively.	mates for breeding. Examples	
			of animal behaviors that affect	
			the probability of plant	
			reproduction could include	
			transferring pollen or seeds, and	
			creating conditions for seed	
			germination and growth.	
			Examples of plant structures	
			could include bright flowers	
			attracting butterflies that	
			transfer pollen, flower nectar	
			and odors that attract insects	
			that transfer pollen, and hard	
			shells on nuts that squirrels	
			bury.]	
MS-LS1-5	From Molecules to	Construct a scientific	Examples of local	
	Organisms: Structures	explanation based on evidence	environmental conditions could	
	and Processes	for how environmental and	include availability of food,	
		genetic factors influence the	light, space, and water.	
		growth of organisms.	Examples of genetic factors	

Version Upo	date: August 2025	6
		could include large breed cattle
		and species of grass affecting
		growth of organisms. Examples
		of evidence could include
		drought decreasing plant
		growth, fertilizer increasing
		plant growth, different varieties
		of plant seeds growing at
		different rates in different
		conditions, and fish growing
		larger in large ponds than they
		do in small ponds.] [Assessment
		Boundary: Assessment does not
		include genetic mechanisms,
		gene regulation, or biochemical
		processes.]

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

• Tiered interventions following the RTI framework

- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	6th	2	21-24 days

Unit Title: Matter and Energy in Organisms and Ecosystems

OVERVIEW OF UNIT:

In this unit, Students analyze and interpret data, develop models, construct arguments, and demonstrate a deeper understanding of the cycling of matter, the flow of energy, and resources in ecosystems. They are able to study patterns of interactions among organisms within an ecosystem. They consider biotic and abiotic factors in an ecosystem and the effects these factors have on populations. They also understand that the limits of resources influence the growth of organisms and populations, which may result in competition for those limited resources.

Big Ideas

- Organisms and populations of organisms are dependent on their environmental interactions with other living things.
- Organisms and populations of organisms are dependent on their environmental interactions with nonliving factors.
- In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with others for limited resources.
- Access to food, water, oxygen, or other resources constrain organisms' growth and reproduction.
- Predatory interactions may reduce the number of organisms or eliminate whole populations of organisms.
- Mutually beneficial interactions may become so interdependent that each organism requires the other for survival.
- The patterns of interactions of organisms with their environment, both its living and nonliving components, are shared.
- Interactions within ecosystems have patterns that can be used to identify cause-and-effect relationships.
- Patterns of interactions among organisms across multiple ecosystems can be predicted.
- Patterns of interactions can be used to make predictions about the relationships among and between organisms and abiotic components of ecosystems.
- Food webs are models that demonstrate how matter and energy are transferred among producers, consumers, and decomposers as the three groups interact within an ecosystem.
- Transfers of matter into and out of the physical environment occur at every level.
- Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments.
- Decomposers recycle nutrients from dead plant or animal matter back to the water in aquatic environments.

- 9
- The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem.
- The transfer of energy can be tracked as energy flows through an ecosystem.
- Science assumes that objects and events in ecosystems occur in consistent patterns that are understandable through measurement and observation.

Essential Questions

- How do changes in the availability of matter and energy effect populations in an ecosystem?
- How do relationships among organisms, in an ecosystem, effect populations?
- How can you explain the stability of an ecosystem by tracing the flow of matter and energy?

Objectives

- Students will be able to determine how changes in the availability of matter and energy affect populations within an ecosystem.
- Students will be able to classify organism relationships and how they affect populations.
- Students will be able to trace the flow of matter and energy to explain the stability of an ecosystem.

Assessment

Formative Assessment:

- Labs
- Claim-Evidence- Reasoning
- Class Discussions

Summative Assessment:

- Multiple Choice Assessment
- Open Ended Response
- Claim-Evidence- Reasoning

Benchmark:

• Unit Assessments

Alternative:

- Performance Assessments
- Projects
- Models
- Modified Tests Independently Developed by Teacher

Key Vocabulary

Ecosystem, abiotic, biotic, energy pyramid, food chain, food web, limiting factors, competition, populations, communities, predator, prey, consumer, producer, herbivore, carnivore, omnivore, decomposer

Resources & Materials

Stemscopes website & kits

- Print and digital copies of textbook
- Lab write-ups
- SEP simulations
- Content videos
- PhET Interactive Simulations
- Reading articles
- Math connections
- Pre-assembled Kits

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

• Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build schema, watch videos, complete labs, take assessments and collect data.

Standard	Standard Description
8.1.8.DA.1	Organize and transform data collected using computational tools to make it usable for
	a specific purpose.
8.2.8.ED.3	Develop a proposal for a solution to a real-world problem that includes a model (e.g.,
	physical prototype, graphical/technical sketch).

Interdisciplinary Integration

Activities:

- Students will be able to create a scientific explanation using evidence and reasoning from observation and informational text to support a scientific claim
- Students will be able to generate numerical data to represent observations and measurements used to write a scientific explanation.

Standard	Standard Description	
NJSLS-ELA AW	Write arguments to support claims in an analysis of substantive topics or texts, using	
	valid reasoning and relevant and sufficient evidence.	
NJSLS-ELA	Write arguments on discipline-specific content (e.g., social studies, science, math,	
W.AW.6.1	technical subjects, English/Language Arts) to support claims with clear reasons and	
	relevant evidence.	
NJSLS-ELA	Write informative/explanatory texts (including the narration of historical events,	
W.IW.6.2	scientific procedures/ experiments, or technical processes) to examine a topic and	
	convey ideas, concepts, and information through the selection, organization, and	
	analysis of relevant content.	
NJSLS-ELA	Write routinely over extended time frames (time for research, reflection,	
W.RW.6.7	metacognition/self-correction, and revision) and shorter time frames (a single sitting	
	or a day or two) for a range of discipline-specific tasks, purposes, and audiences.	
6.SP.B.5	Summarize numerical data sets in relation to their context, such as by: a. Reporting	
6.SP.B.5a	the number of observations. b. Describing the nature of the attribute under	
6.SP.B.5b	investigation, including how it was measured and its units of measurement. c. Giving	
6.SP.B.5c	quantitative measures of center (median and/or mean) and variability (interquartile	
6.SP.B.5d	range and/or mean absolute deviation), as well as describing any overall pattern and	

any striking deviations from the overall pattern with reference to the context in which the data were gathered. d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

21st Century Life Skills Standards		
Activities:		
• Students will work in groups to collaborate, at times taking leadership roles to communicate project		
ideas to the who	ple class.	
Standard	Student Learning Objectives	
9.4.8.GCA.2	Demonstrate openness to diverse ideas and perspectives through active discussions	
	to achieve a group goal.	
9.4.8.IML.4	Ask insightful questions to organize different types of data and create meaningful	
	visualizations.	

Tareers Activities: • Students will create scientific explanations to describe observable phenomena in order to communicate findings. Practice Description Consider the Students understand the interrelated nature of their actions and regularly make.

Consider the Students understand the interrelated nature of their actions and regularly make environmental, social decisions that positively impact and/or mitigate negative impact on other people. and economic impacts organization, and the environment. They are aware of and utilize new technologies, of decisions understandings, procedures, materials, and regulations affecting the nature of their work as it relates to the impact on the social condition, the environment and the profitability of the organization. Act as a responsible Students understand the obligations and responsibilities of being a member of a and contributing community, and they demonstrate this understanding every day through their community members interactions with others. They are conscientious of the impacts of their decisions on and employee. others and the environment around them. They think about the near-term and long-term consequences of their actions and seek to act in ways that contribute to the betterment of their teams, families, community and workplace. They are reliable and consistent in going beyond the minimum expectation and in participating in activities that serve the greater good. Demonstrate creativity Students regularly think of ideas that solve problems in new and different ways, and innovation. and they contribute those ideas in a useful and productive manner to improve their organization. They can consider unconventional ideas and suggestions as solutions to issues, tasks or problems, and they discern which ideas and suggestions will add greatest value. They seek new methods, practices, and ideas from a variety of sources and seek to apply those ideas to their own workplace. They take action on their ideas and understand how to bring innovation to an organization. Utilize critical thinking Students readily recognize problems in the workplace, understand the nature of the to make sense of problem, and devise effective plans to solve the problem. They are aware of the problem and carefully consider the options to solve the problem. Once a solution is

problems and persevere in solving them. Model integrity, ethical leadership and effective management. Work productively in competence. Work productively in teams while using cultural/global competence. Model integrityein Model integrity in solving them. Model integrity, ethical leadership and effective in solving the workplace agreed upon, they follow through to ensure the problem is solved, whether through this when they occur and take action quickly to address the problem; they thoughtfully investigate the root cause of the problem prior to introducing solutions. Their own actions or the actions of others. Students consistently act in ways that align personal and community-held ideals and principles while employing strategies to positively influence others in the workplace. They have a clear understanding of integrity and act on this understanding in every decision. They use a variety of means to positively impact the directions and actions of a team or organization, and they apply insights into human behavior to change others' action, attitudes and/or beliefs. They recognize the near-term and long-term effects that management's actions and attitudes can have on productivity, morals and organizational culture. Students find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of all team members. They plan and facilitate effective team meetings.		7
thoughtfully investigate the root cause of the problem prior to introducing solutions. Their own actions or the actions of others. Model integrity, ethical leadership and effective management. Students consistently act in ways that align personal and community-held ideals and principles while employing strategies to positively influence others in the workplace. They have a clear understanding of integrity and act on this understanding in every decision. They use a variety of means to positively impact the directions and actions of a team or organization, and they apply insights into human behavior to change others' action, attitudes and/or beliefs. They recognize the near-term and long-term effects that management's actions and attitudes can have on productivity, morals and organizational culture. Use technology to enhance productivity increase collaboration and communicate effectively. Students find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Work productively in teams while using cultural/global Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of	problems and persevere	agreed upon, they follow through to ensure the problem is solved, whether through
Model integrity, ethical leadership and effective management. Students consistently act in ways that align personal and community-held ideals and principles while employing strategies to positively influence others in the workplace. They have a clear understanding of integrity and act on this understanding in every decision. They use a variety of means to positively impact the directions and actions of a team or organization, and they apply insights into human behavior to change others' action, attitudes and/or beliefs. They recognize the near-term and long-term effects that management's actions and attitudes can have on productivity, morals and organizational culture. Use technology to enhance productivity increase collaboration and communicate effectively. Students find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Work productively in teams while using cultural/global Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of	in solving them.	this when they occur and take action quickly to address the problem; they
Model integrity, ethical leadership and effective management. Students consistently act in ways that align personal and community-held ideals and principles while employing strategies to positively influence others in the workplace. They have a clear understanding of integrity and act on this understanding in every decision. They use a variety of means to positively impact the directions and actions of a team or organization, and they apply insights into human behavior to change others' action, attitudes and/or beliefs. They recognize the near-term and long-term effects that management's actions and attitudes can have on productivity, morals and organizational culture. Use technology to enhance productivity increase collaboration and communicate effectively. Students find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Work productively in teams while using cultural/global Work productively in teams while using cultural/global They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of		thoughtfully investigate the root cause of the problem prior to introducing
leadership and effective management. and principles while employing strategies to positively influence others in the workplace. They have a clear understanding of integrity and act on this understanding in every decision. They use a variety of means to positively impact the directions and actions of a team or organization, and they apply insights into human behavior to change others' action, attitudes and/or beliefs. They recognize the near-term and long-term effects that management's actions and attitudes can have on productivity, morals and organizational culture. Use technology to enhance productivity increase collaboration and communicate effectively. Students find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Work productively in teams while using cultural/global Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of		solutions. Their own actions or the actions of others.
management. workplace. They have a clear understanding of integrity and act on this understanding in every decision. They use a variety of means to positively impact the directions and actions of a team or organization, and they apply insights into human behavior to change others' action, attitudes and/or beliefs. They recognize the near-term and long-term effects that management's actions and attitudes can have on productivity, morals and organizational culture. Use technology to enhance productivity increase collaboration and communicate effectively. Students find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Work productively in teams while using cultural/global Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of	Model integrity, ethical	Students consistently act in ways that align personal and community-held ideals
understanding in every decision. They use a variety of means to positively impact the directions and actions of a team or organization, and they apply insights into human behavior to change others' action, attitudes and/or beliefs. They recognize the near-term and long-term effects that management's actions and attitudes can have on productivity, morals and organizational culture. Use technology to enhance productivity increase collaboration and communicate effectively. Students find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Work productively in teams while using cultural/global Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of	leadership and effective	and principles while employing strategies to positively influence others in the
the directions and actions of a team or organization, and they apply insights into human behavior to change others' action, attitudes and/or beliefs. They recognize the near-term and long-term effects that management's actions and attitudes can have on productivity, morals and organizational culture. Use technology to enhance productivity accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Work productively in teams while using cultural/global Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of	management.	workplace. They have a clear understanding of integrity and act on this
human behavior to change others' action, attitudes and/or beliefs. They recognize the near-term and long-term effects that management's actions and attitudes can have on productivity, morals and organizational culture. Use technology to enhance productivity accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Work productively in teams while using cultural/global Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of		understanding in every decision. They use a variety of means to positively impact
the near-term and long-term effects that management's actions and attitudes can have on productivity, morals and organizational culture. Use technology to enhance productivity increase collaboration and communicate effectively. Work productively in teams while using cultural/global the near-term and long-term effects that management's actions and attitudes can have on productivity, morals and organizational culture. Students find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of		the directions and actions of a team or organization, and they apply insights into
Use technology to enhance productivity increase collaboration and communicate effectively. Work productively in teams while using cultural/global have on productivity, morals and organizational culture. Students find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of		human behavior to change others' action, attitudes and/or beliefs. They recognize
Use technology to enhance productivity increase collaboration and communicate effectively. Work productively in teams while using cultural/global Students find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of		the near-term and long-term effects that management's actions and attitudes can
enhance productivity increase collaboration and communicate effectively. Work productively in teams while using cultural/global accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of		have on productivity, morals and organizational culture.
increase collaboration and communicate effectively. Work productively in teams while using cultural/global adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of	Use technology to	Students find and maximize the productive value of existing and new technology to
and communicate effectively. Work productively in teams while using cultural/global technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of	enhance productivity	accomplish workplace tasks and solve workplace problems. They are flexible and
effectively. organizational-of technology applications, and they take actions to prevent or mitigate these risks. Work productively in teams while using cultural/global organizational positive interaction. They find ways to increase the engagement and contribution of	increase collaboration	adaptive in acquiring new technology. They are proficient with ubiquitous
mitigate these risks. Work productively in teams while using cultural/global mitigate these risks. Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of	and communicate	technology applications. They understand the inherent risks-personal and
Work productively in teams while using cultural/global Students positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of	effectively.	organizational-of technology applications, and they take actions to prevent or
teams while using apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of		mitigate these risks.
cultural/global positive interaction. They find ways to increase the engagement and contribution of	Work productively in	Students positively contribute to every team, whether formal or informal. They
	teams while using	apply an awareness of cultural difference to avoid barriers to productive and
competence. all team members. They plan and facilitate effective team meetings.	cultural/global	positive interaction. They find ways to increase the engagement and contribution of
	competence.	all team members. They plan and facilitate effective team meetings.

Standards			
Standard #	Standard Description	Student Learning Objective	Clarification Statement
MS-LS2-1	Ecosystems: Interactions,	Analyze and interpret data to	Emphasis is on cause and
	Energy, and Dynamics	provide evidence for the	effect relationships between
		effects of resource	resources and growth of
		availability on organisms and	individual organisms and the
		populations of organisms in	numbers of organisms in
		an ecosystem.	ecosystems during periods of
			abundant and scarce
			resources.]
MS-LS2-2	Ecosystems: Interactions,	Construct an explanation that	Emphasis is on predicting
	Energy, and Dynamics	predicts patterns of	consistent patterns of
		interactions among	interactions in different
		organisms across multiple	ecosystems in terms of the
		ecosystems.	relationships among and
			between organisms and
			abiotic components of
			ecosystems. Examples of
			types of interactions could
			include competitive,

			predatory, and mutually beneficial.
MS-LS2-3	Ecosystems: Interactions, Energy, and Dynamics	Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.	Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.] [Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.]

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	6th	3	25 days

Unit Title: Interdependent Relationships in Ecosystems

OVERVIEW OF UNIT:

What happens to ecosystems when the environment changes?

Students build on their understandings of the transfer of matter and energy as they study patterns of interactions among organisms within an ecosystem. They consider biotic and abiotic factors in an ecosystem and the effects these factors have on a population. They construct explanations for the interactions in ecosystems and the scientific, economic, political, and social justifications used in making decisions about maintaining biodiversity in ecosystems. The crosscutting concept of *stability and change* provide a framework for understanding the disciplinary core ideas.

Big Ideas

- Ecosystems are dynamic in nature.
- The characteristics of ecosystems can vary over time.
- Disruptions to any physical or biological component of an ecosystem can lead to shifts in all the ecosystem's populations.
- Small changes in one part of an ecosystem might cause large changes in another part.
- Patterns in data about ecosystems can be recognized and used to make warranted inferences about changes in populations.
- Evaluating empirical evidence can be used to support arguments about changes to ecosystems.
- Biodiversity describes the variety of species found in Earth's terrestrial and oceanic ecosystems.
- The completeness, or integrity, of an ecosystem's biodiversity is often used as a measure of its health.
- Changes in biodiversity can influence humans' resources, such as food, energy, and medicines.
- Changes in biodiversity can influence ecosystem services that humans rely on.
- There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.
- A solution needs to be tested and then modified on the basis of the test results, in order to improve it.
- Models of all kinds are important for testing solutions.
- The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.
- Small changes in one part of a system might cause large changes in another part.
- Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes.

Essential Questions

• How can a single change to an ecosystem disrupt the whole system?

• What limits the number and variety of living things in an ecosystem?

Objectives

- Students will be able to describe how a single change to an ecosystem can disrupt the whole system.
- Students will be able to illustrate what limits the number and variety of living things in an ecosystem.

Assessment

Formative Assessment:

- Labs
- Claim-Evidence- Reasoning
- Class Discussions

Summative Assessment:

- Multiple Choice Assessment
- Open Ended Response
- Claim-Evidence- Reasoning

Benchmark:

• Unit Assessments

Alternative:

- Performance Assessments
- Projects
- Models
- Modified Tests Independently Developed by Teacher

Key Vocabulary

Ecosystem, biotic, abiotic, limiting factors, population, community, extinction, biodiversity

Resources & Materials

Stemscopes website & kits

- Print and digital copies of textbook
- Lab write-ups
- SEP simulations
- Content videos
- PhET Interactive Simulations
- Reading articles
- Math connections
- Pre-assembled Kits

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

•	Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build
	schema, watch videos, complete labs, take assessments and collect data.

schema, waten videos, complete labs, take assessments and concet data.	
Standard	Standard Description
8.1.8.DA.1	Organize and transform data collected using computational tools to make it usable for
	a specific purpose.
8.2.8.ED.3	Develop a proposal for a solution to a real-world problem that includes a model (e.g.,
	physical prototype, graphical/technical sketch).

Interdisciplinary Integration

Activities:

- Students will be able to create a scientific explanation using evidence and reasoning from observation and informational text to support a scientific claim
- Students will be able to generate numerical data to represent observations and measurements used to write a scientific explanation.

Standard	Standard Description
NJSLS-ELA AW	Write arguments to support claims in an analysis of substantive topics or texts, using
	valid reasoning and relevant and sufficient evidence.
NJSLS-ELA	Write arguments on discipline-specific content (e.g., social studies, science, math,
W.AW.6.1	technical subjects, English/Language Arts) to support claims with clear reasons and
	relevant evidence.
NJSLS-ELA	Write informative/explanatory texts (including the narration of historical events,
W.IW.6.2	scientific procedures/ experiments, or technical processes) to examine a topic and
	convey ideas, concepts, and information through the selection, organization, and
	analysis of relevant content.
NJSLS-ELA	Write routinely over extended time frames (time for research, reflection,
W.RW.6.7	metacognition/self-correction, and revision) and shorter time frames (a single sitting
	or a day or two) for a range of discipline-specific tasks, purposes, and audiences.
6.SP.B.5	Summarize numerical data sets in relation to their context, such as by: a. Reporting
6.SP.B.5a	the number of observations. b. Describing the nature of the attribute under
6.SP.B.5b	investigation, including how it was measured and its units of measurement. c. Giving
6.SP.B.5c	quantitative measures of center (median and/or mean) and variability (interquartile
6.SP.B.5d	range and/or mean absolute deviation), as well as describing any overall pattern and
	any striking deviations from the overall pattern with reference to the context in which
	the data were gathered. d. Relating the choice of measures of center and variability to
	the shape of the data distribution and the context in which the data were gathered.

21st Century Life Skills Standards

Activities:

• Students will work in groups to collaborate, at times taking leadership roles to communicate project ideas to the whole class.

Standard	Student Learning Objectives
9.4.8.GCA.2	Demonstrate openness to diverse ideas and perspectives through active discussions
	to achieve a group goal.

9.4.8.IML.4	Ask insightful questions to organize different types of data and create meaningfu	
	visualizations.	

Careers		
Activities:		
 Students will create scientific explanations to describe observable phenomena in order to 		
communicate finding	S.	
Practice	Description	
Consider the	Students understand the interrelated nature of their actions and regularly make	
environmental, social	decisions that positively impact and/or mitigate negative impact on other people,	
and economic impacts	organization, and the environment. They are aware of and utilize new technologies,	
of decisions.	understandings, procedures, materials, and regulations affecting the nature of their	
	work as it relates to the impact on the social condition, the environment and the	
	profitability of the organization.	
Act as a responsible	Students understand the obligations and responsibilities of being a member of a	
and contributing	community, and they demonstrate this understanding every day through their	
community members	interactions with others. They are conscientious of the impacts of their decisions on	
and employee.	others and the environment around them. They think about the near-term and	
	long-term consequences of their actions and seek to act in ways that contribute to	
	the betterment of their teams, families, community and workplace. They are	
	reliable and consistent in going beyond the minimum expectation and in	
	participating in activities that serve the greater good.	
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways,	
and innovation.	and they contribute those ideas in a useful and productive manner to improve their	
	organization. They can consider unconventional ideas and suggestions as solutions	
	to issues, tasks or problems, and they discern which ideas and suggestions will add	
	greatest value. They seek new methods, practices, and ideas from a variety of	
	sources and seek to apply those ideas to their own workplace. They take action on	
	their ideas and understand how to bring innovation to an organization.	
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the	
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the	
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is	
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through	
	this when they occur and take action quickly to address the problem; they	
	thoughtfully investigate the root cause of the problem prior to introducing	
	solutions. Their own actions or the actions of others.	
Model integrity, ethical	Students consistently act in ways that align personal and community-held ideals	
leadership and effective	and principles while employing strategies to positively influence others in the	
management.	workplace. They have a clear understanding of integrity and act on this	
	understanding in every decision. They use a variety of means to positively impact	
	the directions and actions of a team or organization, and they apply insights into	
	human behavior to change others' action, attitudes and/or beliefs. They recognize	

	the near-term and long-term effects that management's actions and attitudes can	
	have on productivity, morals and organizational culture.	
Use technology to	Students find and maximize the productive value of existing and new technology to	
enhance productivity	accomplish workplace tasks and solve workplace problems. They are flexible and	
increase collaboration	adaptive in acquiring new technology. They are proficient with ubiquitous	
and communicate	technology applications. They understand the inherent risks-personal and	
effectively.	organizational-of technology applications, and they take actions to prevent or	
	mitigate these risks.	
Work productively in	Students positively contribute to every team, whether formal or informal. They	
teams while using	apply an awareness of cultural difference to avoid barriers to productive and	
cultural/global	positive interaction. They find ways to increase the engagement and contribution of	
competence.	all team members. They plan and facilitate effective team meetings.	

	Standards				
Standard #	Standard Description	Student Learning Objective	Clarification Statement		
MS-LS2-4	Ecosystems: Interactions, Energy, and Dynamics	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.	Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.]		
MS-LS2-5	Ecosystems: Interactions, Energy, and Dynamics	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.	Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.]		
MS-ETS1-1	Engineering Design	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	N/A		

Version Update: August 2025 20

MS-ETS1-3	Engineering Design	Analyze data from tests to	N/A
		determine similarities and	
		differences among several	
		design solutions to identify	
		the best characteristics of	
		each that can be combined	
		into a new solution to better	
		meet the criteria for success.	

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm

 Adapt a Strategy – Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Version Update: August 2025

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	6th	4	25 days

Unit Title: Forces and Motion

OVERVIEW OF UNIT:

Students use system and system models and stability and change to understanding ideas related to why some objects will keep moving and why objects fall to the ground. Students apply Newton's third law of motion to related forces to explain the motion of objects. Students also apply an engineering practice and concept to solve a problem caused when objects collide. The crosscutting concepts of system and system models and stability and change provide a framework for understanding the disciplinary core ideas. Students demonstrate proficiency in asking questions, planning and carrying out investigations, designing solutions, engaging in argument from evidence, developing and using models, and constructing explanations and designing solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Big Ideas

- For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first, but in the opposite direction (Newton's third law).
- Models can be used to represent the motion of objects in colliding systems and their interactions, such as inputs, processes, and outputs, as well as energy and matter flows within systems.
- The change in an object's motion depends on balanced (Newton's first law) and unbalanced forces in a system Evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object includes qualitative comparisons of forces, mass, and changes in motion (Newton's second law); frame of reference; and specification of units
- The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will change.
- The greater the mass of the object, the greater the force needed to achieve the same change in motion.
- For any given object, a larger force causes a larger change in motion.
- Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and forces at different scales.

Essential Questions

- How does a sailboat work?
- Who can build the fastest sailboat?

Objectives

- Students will be able to synthesize a working sailboat.
- Students will be able to construct and compare the fastest sailboat.

Assessment			
Formative Assessment: Benchmark:			
• Labs	 Unit Assessments 		
 Claim-Evidence- Reasoning 			
 Class Discussions 	Alternative:		
	 Performance Assessments 		
Summative Assessment:	Projects		
 Multiple Choice Assessment 	 Models 		
 Open Ended Response 	 Modified Tests Independently Developed by 		
 Claim-Evidence- Reasoning 	Teacher		

Key Vocabulary

Newton's Laws of Motion, gravity, acceleration, mass, velocity, friction

Resources & Materials

Stemscopes website & kits

- Print and digital copies of textbook
- Lab write-ups
- SEP simulations
- Content videos
- PhET Interactive Simulations
- Reading articles
- Math connections
- Pre-assembled Kits

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

• Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build schema, watch videos, complete labs, take assessments and collect data.

Standard	Standard Description	
8.1.8.DA.1	Organize and transform data collected using computational tools to make it usable for	
	a specific purpose.	

8.2.8.ED.3	Develop a proposal for a solution to a real-world problem that includes a mode	
	physical prototype, graphical/technical sketch).	

Interdisciplinary Integration

Activities:

- Students will be able to create a scientific explanation using evidence and reasoning from observation and informational text to support a scientific claim
- Students will be able to generate numerical data to represent observations and measurements used to write a scientific explanation.

Standard	Standard Description	
NJSLS-ELA AW	Write arguments to support claims in an analysis of substantive topics or texts, using	
	valid reasoning and relevant and sufficient evidence.	
NJSLS-ELA	Write arguments on discipline-specific content (e.g., social studies, science, math,	
W.AW.6.1	technical subjects, English/Language Arts) to support claims with clear reasons and	
	relevant evidence.	
NJSLS-ELA	Write informative/explanatory texts (including the narration of historical events,	
W.IW.6.2	scientific procedures/ experiments, or technical processes) to examine a topic and	
	convey ideas, concepts, and information through the selection, organization, and	
	analysis of relevant content.	
NJSLS-ELA	Write routinely over extended time frames (time for research, reflection,	
W.RW.6.7	metacognition/self-correction, and revision) and shorter time frames (a single sitting	
	or a day or two) for a range of discipline-specific tasks, purposes, and audiences.	
6.SP.B.5	Summarize numerical data sets in relation to their context, such as by: a. Reporting	
6.SP.B.5a	the number of observations. b. Describing the nature of the attribute under	
6.SP.B.5b	investigation, including how it was measured and its units of measurement. c. Giving	
6.SP.B.5c	quantitative measures of center (median and/or mean) and variability (interquartile	
6.SP.B.5d	range and/or mean absolute deviation), as well as describing any overall pattern and	
	any striking deviations from the overall pattern with reference to the context in which	
	the data were gathered. d. Relating the choice of measures of center and variability to	
	the shape of the data distribution and the context in which the data were gathered.	

21st Century Life Skills Standards

Activities:

• Students will work in groups to collaborate, at times taking leadership roles to communicate project ideas to the whole class.

Standard	Student Learning Objectives		
9.4.8.GCA.2	Demonstrate openness to diverse ideas and perspectives through active discussions		
	to achieve a group goal.		
9.4.8.IML.4	Ask insightful questions to organize different types of data and create meaningful		
	visualizations.		

Careers

Activities:

• Students will create scientific explanations to describe observable phenomena in order to communicate findings.

communicate finding	ŢS.
Practice	Description
Consider the environmental, social and economic impacts of decisions.	Students understand the interrelated nature of their actions and regularly make decisions that positively impact and/or mitigate negative impact on other people, organization, and the environment. They are aware of and utilize new technologies, understandings, procedures, materials, and regulations affecting the nature of their work as it relates to the impact on the social condition, the environment and the profitability of the organization.
Act as a responsible and contributing community members and employee.	Students understand the obligations and responsibilities of being a member of a community, and they demonstrate this understanding every day through their interactions with others. They are conscientious of the impacts of their decisions on others and the environment around them. They think about the near-term and long-term consequences of their actions and seek to act in ways that contribute to the betterment of their teams, families, community and workplace. They are reliable and consistent in going beyond the minimum expectation and in participating in activities that serve the greater good.
Demonstrate creativity and innovation.	Students regularly think of ideas that solve problems in new and different ways, and they contribute those ideas in a useful and productive manner to improve their organization. They can consider unconventional ideas and suggestions as solutions to issues, tasks or problems, and they discern which ideas and suggestions will add greatest value. They seek new methods, practices, and ideas from a variety of sources and seek to apply those ideas to their own workplace. They take action on their ideas and understand how to bring innovation to an organization.
Utilize critical thinking to make sense of problems and persevere in solving them.	Students readily recognize problems in the workplace, understand the nature of the problem, and devise effective plans to solve the problem. They are aware of the problem and carefully consider the options to solve the problem. Once a solution is agreed upon, they follow through to ensure the problem is solved, whether through this when they occur and take action quickly to address the problem; they thoughtfully investigate the root cause of the problem prior to introducing solutions. Their own actions or the actions of others.
Model integrity, ethical leadership and effective management.	Students consistently act in ways that align personal and community-held ideals and principles while employing strategies to positively influence others in the workplace. They have a clear understanding of integrity and act on this understanding in every decision. They use a variety of means to positively impact the directions and actions of a team or organization, and they apply insights into human behavior to change others' action, attitudes and/or beliefs. They recognize the near-term and long-term effects that management's actions and attitudes can have on productivity, morals and organizational culture.
Use technology to enhance productivity	Students find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and

increase collaboration	adaptive in acquiring new technology. They are proficient with ubiquitous	
and communicate	technology applications. They understand the inherent risks-personal and	
effectively.	organizational-of technology applications, and they take actions to prevent or	
	mitigate these risks.	
Work productively in	Students positively contribute to every team, whether formal or informal. They	
teams while using	apply an awareness of cultural difference to avoid barriers to productive and	
cultural/global	positive interaction. They find ways to increase the engagement and contribution of	
competence.	all team members. They plan and facilitate effective team meetings.	

Standards				
Standard #	Standard Description	Student Learning Objective	Clarification Statement	
MS-PS2-1	Motion and Stability: Forces and Interactions	Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.	Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle.] [Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension.]	
MS-PS2-2	Motion and Stability: Forces and Interactions	Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.	Emphasis is on balanced (Newton's First Law) and unbalanced forces in a system, qualitative comparisons of forces, mass and changes in motion (Newton's Second Law), frame of reference, and specification of units.] [Assessment Boundary: Assessment is limited to forces and changes in motion in one-dimension in an inertial reference frame and to change in one variable at a time. Assessment does not include the use of trigonometry.]	
MS-ETS1-1	Engineering Design	Define the criteria and constraints of a design problem with sufficient	N/A	

Version Update: August 2025 27

precision to ensure a successful solution, taking	
into account relevant	
scientific principles and	
potential impacts on people	
and the natural environment	
that may limit possible	
solutions.	
MS-ETS1-2 Engineering Design Evaluate competing design N/A	
solutions using a systematic	
process to determine how	
well they meet the criteria	
and constraints of the	
problem.	
MS-ETS1-3 Engineering Design Analyze data from tests to N/A	
determine similarities and	
differences among several	
design solutions to identify	
the best characteristics of	
each that can be combined	
into a new solution to better	
meet the criteria for success.	
MS-ETS1-4 Engineering Design Develop a model to generate N/A	
data for iterative testing and	
modification of a proposed	
object, tool, or process such	
that an optimal design can be	
achieved.	

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher

Version Update: August 2025

- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students -http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Version Update: August 2025

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	6th	5	25 days

Unit Title: Types of Interactions

OVERVIEW OF UNIT:

Students use cause and effect; system and system models; and stability and change to understand ideas that explain why some materials are attracted to each other while others are not. Students apply ideas about gravitational, electrical, and magnetic forces to explain a variety of phenomena including beginning ideas about why some materials attract each other while others repel. In particular, students develop understandings that gravitational interactions are always attractive but that electrical and magnetic forces can be both attractive and negative. Students also develop ideas that objects can exert forces on each other even though the objects are not in contact, through fields. Students are expected to consider the influence of science, engineering, and technology on society and the natural world. Students are expected to demonstrate proficiency in asking questions, planning and carrying out investigations, designing solutions, and engaging in argument. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Big Ideas

- Fields exist between objects that exert forces on each other even though the objects are not in contact.
- The interactions of magnets, electrically charged strips of tape, and electrically charged pith balls are examples of fields that exist between objects exerting forces on each other, even though the objects are not in contact.
- Forces that act at a distance (electric, magnetic, and gravitational) can be explained by fields that extend through space and can be mapped by their effect on a test object (a charged object or a ball, respectively).
- Cause-and-effect relationships may be used to predict phenomena in natural or designed systems.
- Factors that affect the strength of electrical and magnetic forces
- Devices that use electric and magnetic forces could include electromagnets, electric motors, and generators.
- Electric and magnetic (electromagnetic) forces can be attractive or repulsive.
- The size of an electric or magnetic (electromagnetic) force depends on the magnitudes of the charges, currents, or magnetic strengths involved and on the distances between the interacting objects.
- Cause-and-effect relationships may be used to predict the factors that affect the strength of electrical and magnetic forces in natural or designed systems
- Gravitational interactions are always attractive and depend on the masses of interacting objects.
- There is a gravitational force between any two masses, but it is very small except when one or both of the objects have large mass.
- Evidence supporting the claim that gravitational interactions are attractive and depend on the masses of interacting objects could include data generated from simulations or digital tools and charts

displaying mass, strength of interaction, distance from the sun and orbital periods of objects within the solar system.

Essential Questions

- Can you apply a force on something without touching it?
- How does a Maglev train work?
- If I were able to eliminate air resistance and dropped a feather and a hammer at the same time, which would land first?

Objectives

Assessment

• Students will be able to determine the factors that move objects

ASSESSMENT			
Benchmark:			
 Unit Assessments 			
Alternative:			
 Performance Assessments 			
 Projects 			
 Models 			

• Open Ended Response

• Claim-Evidence- Reasoning

Modified Tests Independently Developed by Teacher

Key Vocabulary

forces, Newton's laws of motion, gravity, interactions, electricity, magnets, electromagnet

Resources & Materials

Stemscopes website & kits

- Print and digital copies of textbook
- Lab write-ups
- SEP simulations
- Content videos
- PhET Interactive Simulations
- Reading articles
- Math connections
- Pre-assembled Kits

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

• Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build schema, watch videos, complete labs, take assessments and collect data.

Standard	Standard Description
8.1.8.DA.1	Organize and transform data collected using computational tools to make it usable for
	a specific purpose.
8.2.8.ED.3	Develop a proposal for a solution to a real-world problem that includes a model (e.g.,
	physical prototype, graphical/technical sketch).

Interdisciplinary Integration

Activities:

- Students will be able to create a scientific explanation using evidence and reasoning from observation and informational text to support a scientific claim
- Students will be able to generate numerical data to represent observations and measurements used to write a scientific explanation.

Standard	Standard Description	
NJSLS-ELA AW	Write arguments to support claims in an analysis of substantive topics or texts, using	
	valid reasoning and relevant and sufficient evidence.	
NJSLS-ELA	Write arguments on discipline-specific content (e.g., social studies, science, math,	
W.AW.6.1	technical subjects, English/Language Arts) to support claims with clear reasons and	
	relevant evidence.	
NJSLS-ELA	Write informative/explanatory texts (including the narration of historical events,	
W.IW.6.2	scientific procedures/ experiments, or technical processes) to examine a topic and	
	convey ideas, concepts, and information through the selection, organization, and	
	analysis of relevant content.	
NJSLS-ELA	Write routinely over extended time frames (time for research, reflection,	
W.RW.6.7	metacognition/self-correction, and revision) and shorter time frames (a single sitting	
	or a day or two) for a range of discipline-specific tasks, purposes, and audiences.	
6.SP.B.5	Summarize numerical data sets in relation to their context, such as by: a. Reporting	
6.SP.B.5a	the number of observations. b. Describing the nature of the attribute under	
6.SP.B.5b	investigation, including how it was measured and its units of measurement. c. Giving	
6.SP.B.5c	quantitative measures of center (median and/or mean) and variability (interquartile	
6.SP.B.5d	range and/or mean absolute deviation), as well as describing any overall pattern and	
	any striking deviations from the overall pattern with reference to the context in which	
	the data were gathered. d. Relating the choice of measures of center and variability to	
	the shape of the data distribution and the context in which the data were gathered.	

Version Update: August 2025

21st Century Life Skills Standards

Activities:

• Students will work in groups to collaborate, at times taking leadership roles to communicate project ideas to the whole class.

Standard	Student Learning Objectives		
9.4.8.GCA.2	Demonstrate openness to diverse ideas and perspectives through active discussions		
	to achieve a group goal.		
9.4.8.IML.4	Ask insightful questions to organize different types of data and create meaningful		
	visualizations.		

	Careers			
Activities:				
Students will crea	ate scientific explanations to describe observable phenomena in order to			
communicate finding	S.			
Practice	Description			
Consider the	Students understand the interrelated nature of their actions and regularly make			
environmental, social	decisions that positively impact and/or mitigate negative impact on other people,			
and economic impacts	organization, and the environment. They are aware of and utilize new technologies,			
of decisions.	understandings, procedures, materials, and regulations affecting the nature of their			
	work as it relates to the impact on the social condition, the environment and the			
	profitability of the organization.			
Act as a responsible	Students understand the obligations and responsibilities of being a member of a			
and contributing	community, and they demonstrate this understanding every day through their			
community members	interactions with others. They are conscientious of the impacts of their decisions on			
and employee.	others and the environment around them. They think about the near-term and			
	long-term consequences of their actions and seek to act in ways that contribute to			
	the betterment of their teams, families, community and workplace. They are			
	reliable and consistent in going beyond the minimum expectation and in			
	participating in activities that serve the greater good.			
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways,			
and innovation.	and they contribute those ideas in a useful and productive manner to improve their			
	organization. They can consider unconventional ideas and suggestions as solutions			
	to issues, tasks or problems, and they discern which ideas and suggestions will add			
	greatest value. They seek new methods, practices, and ideas from a variety of			
	sources and seek to apply those ideas to their own workplace. They take action on			
	their ideas and understand how to bring innovation to an organization.			
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the			
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the			
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is			
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through			
	this when they occur and take action quickly to address the problem; they			
	thoughtfully investigate the root cause of the problem prior to introducing			
	solutions. Their own actions or the actions of others.			

Model integrity, ethical	Students consistently act in ways that align personal and community-held ideals		
leadership and effective	and principles while employing strategies to positively influence others in the		
management.	workplace. They have a clear understanding of integrity and act on this		
	understanding in every decision. They use a variety of means to positively impact		
	the directions and actions of a team or organization, and they apply insights into		
	human behavior to change others' action, attitudes and/or beliefs. They recognize		
	the near-term and long-term effects that management's actions and attitudes can		
	have on productivity, morals and organizational culture.		
Use technology to	Students find and maximize the productive value of existing and new technology to		
enhance productivity	accomplish workplace tasks and solve workplace problems. They are flexible and		
increase collaboration	adaptive in acquiring new technology. They are proficient with ubiquitous		
and communicate	technology applications. They understand the inherent risks-personal and		
effectively.	organizational-of technology applications, and they take actions to prevent or		
	mitigate these risks.		
Work productively in	Students positively contribute to every team, whether formal or informal. They		
teams while using	apply an awareness of cultural difference to avoid barriers to productive and		
cultural/global	positive interaction. They find ways to increase the engagement and contribution of		
competence.	all team members. They plan and facilitate effective team meetings.		

Standards				
Standard #	Standard Description	Student Learning Objective	Clarification Statement	
MS-PS2-3	Motion and Stability: Forces	Ask questions about data to	Examples of devices that use	
	and Interactions	determine the factors that	electric and magnetic forces	
		affect the strength of electric	could include	
		and magnetic forces.	electromagnets, electric	
			motors, or generators.	
			Examples of data could	
			include the effect of the	
			number of turns of wire on	
			the strength of an	
			electromagnet, or the effect	
			of increasing the number or	
			strength of magnets on the	
			speed of an electric motor.]	
			[Assessment Boundary:	
			Assessment about questions	
			that require quantitative	
			answers is limited to	
			proportional reasoning and	
			algebraic thinking.]	
MS-PS2-4	Motion and Stability: Forces	Construct and present	Examples of evidence for	
	and Interactions	arguments using evidence to	arguments could include data	
		support the claim that	generated from simulations	

	ite. Hugust 2025	r	
		gravitational interactions are	or digital tools; and charts
		attractive and depend on the	displaying mass, strength of
		masses of interacting objects.	interaction, distance from the
			Sun, and orbital periods of
			objects within the solar
			system.] [Assessment
			Boundary: Assessment does
			not include Newton's Law of
			Gravitation or Kepler's
			Laws.]
MS-PS2-5	Motion and Stability: Forces	Conduct an investigation and	Examples of this
	and Interactions	evaluate the experimental	phenomenon could include
		design to provide evidence	the interactions of magnets,
		that fields exist between	electrically-charged strips of
		objects exerting forces on	tape, and electrically-charged
		each other even though the	pith balls. Examples of
		objects are not in contact.	investigations could include
			first-hand experiences or
			simulations.] [Assessment
			Boundary: Assessment is
			limited to electric and
			magnetic fields and limited
			to qualitative evidence for
			the existence of fields.]

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks

- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Version Update: August 2025

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	6th	6	20 days

Unit Title: Astronomy

OVERVIEW OF UNIT:

This unit is broken down into three sub-ideas: the universe and its stars, Earth and the solar system, and the history of planet Earth. Students examine the Earth's place in relation to the solar system, the Milky Way galaxy, and the universe. There is a strong emphasis on a systems approach and using models of the solar system to explain the cyclical patterns of eclipses, tides, and seasons. There is also a strong connection to engineering through the instruments and technologies that have allowed us to explore the objects in our solar system and obtain the data that support the theories explaining the formation and evolution of the universe. Students examine geosciences data in order to understand the processes and events in Earth's history.

Big Ideas

- Patterns in the apparent motion of the sun, moon, and stars in the sky can be observed, described, predicted, and explained with models.
- The Earth and solar system model of the solar system can explain eclipses of the sun and the moon.
- Earth's spin axis is fixed in direction over the short term but tilted relative to its orbit around the sun.
- The seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year.
- Patterns can be used to identify cause-and-effect relationships that exist in the apparent motion of the sun, moon, and stars in the sky.
- Science assumes that objects and events in the solar system systems occur in consistent patterns that are understandable through measurement and observation.
- Gravity plays a role in the motions within galaxies and the solar system.
- Gravity is the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them.
- Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe.
- The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids, that are held in orbit around the sun by its gravitational pull on them.
- The solar system appears to have formed from a disk of dust and gas, drawn together by gravity.
- Models can be used to represent the role of gravity in the motions and interactions within galaxies and the solar system.
- Science assumes that objects and events in the solar systems occur in consistent patterns that are understandable through measurement and observation.
- Objects in the solar system have scale properties.

- Data from Earth-based instruments, space-based telescopes, and spacecraft can be used to determine similarities and differences among solar system objects.
- The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them.
- Time, space, and energy phenomena in the solar system can be observed at various scales, using models to study systems that are too large.
- Engineering advances have led to important discoveries in space science, and scientific discoveries have led to the development of entire industries and engineered systems.

Essential Questions

- What pattern in the Earth–sun–moon system can be used to explain lunar phases, eclipses of the sun and moon, and seasons?
- What is the role of gravity in the motions within galaxies and the solar system?
- What are the scale properties of objects in the solar system?

Objectives

- Students will be able to identify patterns in the Earth-sun-moon system to explain lunar phases, eclipses of the sun and moon, and seasons.
- Students will be able to determine the role of gravity in the motions within galaxies and the solar system.
- Students will be able to synthesize the scale properties of objects in the solar system

Assessment

Formative Assessment:

- Labs
- Claim-Evidence- Reasoning
- Class Discussions

Summative Assessment:

- Multiple Choice Assessment
- Open Ended Response
- Claim-Evidence- Reasoning

Benchmark:

Unit Assessments

Alternative:

- Performance Assessments
- Projects
- Models
- Modified Tests Independently Developed by Teacher

Key Vocabulary

Solar system, lunar phases, gravity, galaxy, planets

Resources & Materials

Stemscopes website & kits

- Print and digital copies of textbook
- Lab write-ups
- SEP simulations
- Content videos
- PhET Interactive Simulations

- Reading articles
- Math connections
- Pre-assembled Kits

Technology Infusion

38

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

• Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build schema, watch videos, complete labs, take assessments and collect data.

Standard	Standard Description	
8.1.8.DA.1	Organize and transform data collected using computational tools to make it usable for	
	a specific purpose.	
8.2.8.ED.3	Develop a proposal for a solution to a real-world problem that includes a model (e.g.,	
	physical prototype, graphical/technical sketch).	

Interdisciplinary Integration

Activities:

- Students will be able to create a scientific explanation using evidence and reasoning from observation and informational text to support a scientific claim
- Students will be able to generate numerical data to represent observations and measurements used to write a scientific explanation.

Standard	Standard Description	
NJSLS-ELA AW	Write arguments to support claims in an analysis of substantive topics or texts, using	
	valid reasoning and relevant and sufficient evidence.	
NJSLS-ELA	Write arguments on discipline-specific content (e.g., social studies, science, math,	
W.AW.6.1	technical subjects, English/Language Arts) to support claims with clear reasons and	
	relevant evidence.	
NJSLS-ELA	Write informative/explanatory texts (including the narration of historical events,	
W.IW.6.2	scientific procedures/ experiments, or technical processes) to examine a topic and	
	convey ideas, concepts, and information through the selection, organization, and	
	analysis of relevant content.	
NJSLS-ELA	Write routinely over extended time frames (time for research, reflection,	
W.RW.6.7	metacognition/self-correction, and revision) and shorter time frames (a single sitting	
	or a day or two) for a range of discipline-specific tasks, purposes, and audiences.	

Version Update: August 2025

6.SP.B.5	Summarize numerical data sets in relation to their context, such as by: a. Reporting
6.SP.B.5a	the number of observations. b. Describing the nature of the attribute under
6.SP.B.5b	investigation, including how it was measured and its units of measurement. c. Giving
6.SP.B.5c	quantitative measures of center (median and/or mean) and variability (interquartile
6.SP.B.5d	range and/or mean absolute deviation), as well as describing any overall pattern and
	any striking deviations from the overall pattern with reference to the context in which
	the data were gathered. d. Relating the choice of measures of center and variability to
	the shape of the data distribution and the context in which the data were gathered.

	21st Century Life Skills Standards		
Activities:			
Students will	l work in groups to collaborate, at times taking leadership roles to communicate project		
ideas to the v	whole class.		
Standard	Student Learning Objectives		
9.4.8.GCA.2	Demonstrate openness to diverse ideas and perspectives through active discussions		
	to achieve a group goal.		
9.4.8.IML.4	Ask insightful questions to organize different types of data and create meaningful		
	1 1511 11151 511VIV 4 4 4 5 5 15 15 15 15 15 15 15 15 15 15 15 15		

Careers		
Activities:		
 Students will crea 	ate scientific explanations to describe observable phenomena in order to	
communicate finding	gs.	
Practice	Description	
Consider the	Students understand the interrelated nature of their actions and regularly make	
environmental, social	decisions that positively impact and/or mitigate negative impact on other people,	
and economic impacts	organization, and the environment. They are aware of and utilize new technologies,	
of decisions.	understandings, procedures, materials, and regulations affecting the nature of their	
	work as it relates to the impact on the social condition, the environment and the	
	profitability of the organization.	
Act as a responsible	Students understand the obligations and responsibilities of being a member of a	
and contributing	community, and they demonstrate this understanding every day through their	
community members	interactions with others. They are conscientious of the impacts of their decisions on	
and employee.	others and the environment around them. They think about the near-term and	
	long-term consequences of their actions and seek to act in ways that contribute to	
	the betterment of their teams, families, community and workplace. They are	
	reliable and consistent in going beyond the minimum expectation and in	
	participating in activities that serve the greater good.	
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways,	
and innovation.	and they contribute those ideas in a useful and productive manner to improve their	
	organization. They can consider unconventional ideas and suggestions as solutions	
	to issues, tasks or problems, and they discern which ideas and suggestions will add	
	greatest value. They seek new methods, practices, and ideas from a variety of	

<u> </u>	5			
	sources and seek to apply those ideas to their own workplace. They take action on			
	their ideas and understand how to bring innovation to an organization.			
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the			
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the			
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is			
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through			
	this when they occur and take action quickly to address the problem; they			
	thoughtfully investigate the root cause of the problem prior to introducing			
	solutions. Their own actions or the actions of others.			
Model integrity, ethical	Students consistently act in ways that align personal and community-held ideals			
leadership and effective	and principles while employing strategies to positively influence others in the			
management.	workplace. They have a clear understanding of integrity and act on this			
	understanding in every decision. They use a variety of means to positively impact			
	the directions and actions of a team or organization, and they apply insights into			
	human behavior to change others' action, attitudes and/or beliefs. They recognize			
	the near-term and long-term effects that management's actions and attitudes can			
	have on productivity, morals and organizational culture.			
Use technology to	Students find and maximize the productive value of existing and new technology to			
enhance productivity	accomplish workplace tasks and solve workplace problems. They are flexible and			
increase collaboration	adaptive in acquiring new technology. They are proficient with ubiquitous			
and communicate	technology applications. They understand the inherent risks-personal and			
effectively.	organizational-of technology applications, and they take actions to prevent or			
	mitigate these risks.			
Work productively in	Students positively contribute to every team, whether formal or informal. They			
teams while using	apply an awareness of cultural difference to avoid barriers to productive and			
cultural/global	positive interaction. They find ways to increase the engagement and contribution of			
competence.	all team members. They plan and facilitate effective team meetings.			

	Standards				
Standard #	Standard Description	Student Learning Objective	Clarification Statement		
MS-ESS1-1	Earth's Place in the	Develop and use a model of	Examples of models can be		
	Universe	the Earth-sun-moon system to	physical, graphical, or conceptual.		
		describe the cyclic patterns of			
		lunar phases, eclipses of the			
		sun and moon, and seasons.			
MS-ESS1-2	Earth's Place in the	Develop and use a model to	Emphasis for the model is on		
	Universe	describe the role of gravity in	gravity as the force that holds		
		the motions within galaxies	together the solar system and		
		and the solar system.	Milky Way galaxy and controls		
			orbital motions within them.		
			Examples of models can be		
			physical (such as the analogy of		
			distance along a football field or		

computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students' school or state).] [Assessment Boundary: Assessment does not include Kepler's Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.] MS-ESSI-3 Earth's Place in the Universe Analyze and interpret data to determine scale properties of objects in the solar system. Earth.] Emphasis is on the analysis of data from Earth-based instruments, spacebased telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system bodies.]	version Ope	iate: August 2025		41
(such as mathematical proportions relative to the size of familiar objects such as students' school or state).] [Assessment Boundary: Assessment Boundary: A				computer visualizations of
relative to the size of familiar objects such as students' school or state).] [Assessment Boundary: Assessment does not include Kepler's Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.] MS-ESS1-3 Earth's Place in the Universe Analyze and interpret data to determine scale properties of objects in the solar system. Emphasis is on the analysis of data from Earth-based instruments, spacebased telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				elliptical orbits) or conceptual
objects such as students' school or state).] [Assessment Boundary: Assessment does not include Kepler's Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.] MS-ESS1-3 Earth's Place in the Universe Analyze and interpret data to determine scale properties of objects in the solar system. Emphasis is on the analysis of data from Earth-based instruments, spacebased telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				(such as mathematical proportions
state).] [Assessment Boundary: Assessment does not include Kepler's Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.] MS-ESS1-3 Earth's Place in the Universe Analyze and interpret data to determine scale properties of objects in the solar system. Emphasis is on the analysis of data from Earth-based instruments, spacebased telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				relative to the size of familiar
Assessment does not include Kepler's Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.] MS-ESS1-3 Earth's Place in the Universe Analyze and interpret data to determine scale properties of objects in the solar system. Emphasis is on the analysis of data from Earth-based instruments, spacebased telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				objects such as students' school or
Kepler's Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.] MS-ESS1-3 Earth's Place in the Universe Analyze and interpret data to determine scale properties of objects in the solar system. Emphasis is on the analysis of data from Earth-based instruments, spacebased telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				state).] [Assessment Boundary:
MS-ESS1-3 Earth's Place in the Universe Analyze and interpret data to determine scale properties of objects in the solar system. Emphasis is on the analysis of data from Earth-based instruments, spacebased telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				Assessment does not include
MS-ESS1-3 Earth's Place in the Universe Analyze and interpret data to determine scale properties of objects in the solar system. Earth analysis is on the analysis of data from Earth-based instruments, spacebased telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				Kepler's Laws of orbital motion
MS-ESS1-3 Earth's Place in the Universe Analyze and interpret data to determine scale properties of objects in the solar system. Emphasis is on the analysis of data from Earth-based instruments, spacebased telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				or the apparent retrograde motion
MS-ESS1-3 Earth's Place in the Universe Analyze and interpret data to determine scale properties of objects in the solar system. Emphasis is on the analysis of data from Earth-based instruments, spacebased telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				of the planets as viewed from
Universe determine scale properties of objects in the solar system. data from Earth-based instruments, spacebased telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				Earth.]
objects in the solar system. instruments, spacebased telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system	MS-ESS1-3	Earth's Place in the	Analyze and interpret data to	Emphasis is on the analysis of
telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system		Universe	determine scale properties of	data from Earth-based
determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system			objects in the solar system.	instruments, spacebased
differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				telescopes, and spacecraft to
objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				determine similarities and
properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				differences among solar system
object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				objects. Examples of scale
atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				properties include the sizes of an
(such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				object's layers (such as crust and
radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				atmosphere), surface features
statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				(such as volcanoes), and orbital
and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				radius. Examples of data include
[Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system				statistical information, drawings
Assessment does not include recalling facts about properties of the planets and other solar system				and photographs, and models.]
recalling facts about properties of the planets and other solar system				[Assessment Boundary:
the planets and other solar system				Assessment does not include
				recalling facts about properties of
hodies I				the planets and other solar system
outes.]				bodies.]

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Version Update: August 2025

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	6th	7	20 days

Unit Title: Weather and Climate

OVERVIEW OF UNIT:

What factors interact and influence weather and climate?

This unit is broken down into three sub-ideas: Earth's large-scale systems interactions, the roles of water in Earth's surface processes, and weather and climate. Students make sense of how Earth's geosystems operate by modeling the flow of energy and cycling of matter within and among different systems. A systems approach is also important here, examining the feedbacks between systems as energy from the Sun is transferred between systems and circulates though the ocean and atmosphere.

Big Ideas

- Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation and crystallization, and precipitation, as well as downhill flows on land.
- Global movements of water and its changes in form are propelled by sunlight and gravity.
- The cycling of water through Earth's systems is driven by energy from the sun and the force of gravity.
- Within Earth's systems, the transfer of energy drives the motion and/or cycling of water.
- The motions and complex interactions of air masses result in changes in weather conditions.
- The complex patterns of the changes in and movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns.
- Examples of data that can be used to provide evidence for how the motions and complex interactions
 of air masses result in changes in weather conditions include weather maps, diagrams, and
 visualizations; other examples can be obtained through laboratory experiments.
- Air masses flow from regions of high pressure to regions of low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time.
- Because patterns of the changes and the movement of water in the atmosphere are so complex, weather can only be predicted probabilistically.
- Sudden changes in weather can result when different air masses collide.
- Weather can be predicted within probabilistic ranges.
- Cause-and effect-relationships may be used to predict changes in weather.
- Unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.
- Patterns of atmospheric and oceanic circulation that determine regional climates vary by latitude, altitude, and geographic land distribution.

- Atmospheric circulation that, in part, determines regional climates is the result of sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds.
- Ocean circulation that, in part, determines regional climates is the result of the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents.
- Models that can be used to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates can be diagrams, maps and globes, or digital representations.

Essential Questions

- What are the processes involved in the cycling of water through Earth's systems?
- What is the relationship between the complex interactions of air masses and changes in weather conditions?
- What are the major factors that determine regional climates?

Objectives

- Students will be able to identify the processes involved in the cycling of water through Earth's systems?
- Students will be able to construct relationships between the complex interactions of air masses and changes in weather conditions?
- Students will be able to determine the major factors of regional climates.

Λ	22	ΔC	cm	en	1
					ш.

Formative Assessment:

- Labs
- Claim-Evidence- Reasoning
- Class Discussions

Summative Assessment:

- Multiple Choice Assessment
- Open Ended Response
- Claim-Evidence- Reasoning

Benchmark:

• Unit Assessments

Alternative:

- Performance Assessments
- Projects
- Models
- Modified Tests Independently Developed by Teacher

Key Vocabulary

Weather, climate. Air masses

Resources & Materials

Stemscopes website & kits

- Print and digital copies of textbook
- Lab write-ups
- SEP simulations
- Content videos
- PhET Interactive Simulations

- Reading articles
- Math connections
- Pre-assembled Kits

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

• Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build schema, watch videos, complete labs, take assessments and collect data.

Standard	Standard Description	
8.1.8.DA.1	Organize and transform data collected using computational tools to make it usable for	
	a specific purpose.	
8.2.8.ED.3	Develop a proposal for a solution to a real-world problem that includes a model (e.g.,	
	physical prototype, graphical/technical sketch).	

Interdisciplinary Integration

Activities:

- Students will be able to create a scientific explanation using evidence and reasoning from observation and informational text to support a scientific claim
- Students will be able to generate numerical data to represent observations and measurements used to write a scientific explanation.

Standard	Standard Description	
NJSLS-ELA AW	Write arguments to support claims in an analysis of substantive topics or texts, using	
	valid reasoning and relevant and sufficient evidence.	
NJSLS-ELA	Write arguments on discipline-specific content (e.g., social studies, science, math,	
W.AW.6.1	technical subjects, English/Language Arts) to support claims with clear reasons and	
	relevant evidence.	
NJSLS-ELA	Write informative/explanatory texts (including the narration of historical events,	
W.IW.6.2	scientific procedures/ experiments, or technical processes) to examine a topic and	
	convey ideas, concepts, and information through the selection, organization, and	
	analysis of relevant content.	
NJSLS-ELA	Write routinely over extended time frames (time for research, reflection,	
W.RW.6.7	metacognition/self-correction, and revision) and shorter time frames (a single sitting	
	or a day or two) for a range of discipline-specific tasks, purposes, and audiences.	

Version Update: August 2025

visualizations.

6.SP.B.5	Summarize numerical data sets in relation to their context, such as by: a. Reporting	
6.SP.B.5a	the number of observations. b. Describing the nature of the attribute under	
6.SP.B.5b	investigation, including how it was measured and its units of measurement. c. Giving	
6.SP.B.5c	quantitative measures of center (median and/or mean) and variability (interquartile	
6.SP.B.5d	range and/or mean absolute deviation), as well as describing any overall pattern and	
	any striking deviations from the overall pattern with reference to the context in which	
	the data were gathered. d. Relating the choice of measures of center and variability to	
	the shape of the data distribution and the context in which the data were gathered.	

Activities: • Students will work in groups to collaborate, at times taking leadership roles to communicate project ideas to the whole class. Standard Student Learning Objectives 9.4.8.GCA.2 Demonstrate openness to diverse ideas and perspectives through active discussions to achieve a group goal. 9.4.8.IML.4 Ask insightful questions to organize different types of data and create meaningful

Careers					
Activities:					
Students will crea	• Students will create scientific explanations to describe observable phenomena in order to				
communicate finding	communicate findings.				
Practice	Description				
Consider the environmental, social and economic impacts of decisions.	Students understand the interrelated nature of their actions and regularly make decisions that positively impact and/or mitigate negative impact on other people, organization, and the environment. They are aware of and utilize new technologies, understandings, procedures, materials, and regulations affecting the nature of their work as it relates to the impact on the social condition, the environment and the profitability of the organization.				
Act as a responsible and contributing community members and employee.	Students understand the obligations and responsibilities of being a member of a community, and they demonstrate this understanding every day through their interactions with others. They are conscientious of the impacts of their decisions on others and the environment around them. They think about the near-term and long-term consequences of their actions and seek to act in ways that contribute to the betterment of their teams, families, community and workplace. They are reliable and consistent in going beyond the minimum expectation and in participating in activities that serve the greater good.				
Demonstrate creativity and innovation.	Students regularly think of ideas that solve problems in new and different ways, and they contribute those ideas in a useful and productive manner to improve their organization. They can consider unconventional ideas and suggestions as solutions to issues, tasks or problems, and they discern which ideas and suggestions will add greatest value. They seek new methods, practices, and ideas from a variety of				

	sources and seek to apply those ideas to their own workplace. They take action on	
	their ideas and understand how to bring innovation to an organization.	
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the	
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the	
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is	
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through	
	this when they occur and take action quickly to address the problem; they	
	thoughtfully investigate the root cause of the problem prior to introducing	
	solutions. Their own actions or the actions of others.	
Model integrity, ethical	Students consistently act in ways that align personal and community-held ideals	
leadership and effective	and principles while employing strategies to positively influence others in the	
management.		
	understanding in every decision. They use a variety of means to positively impact	
	the directions and actions of a team or organization, and they apply insights into	
	human behavior to change others' action, attitudes and/or beliefs. They recognize	
	the near-term and long-term effects that management's actions and attitudes can	
	have on productivity, morals and organizational culture.	
Use technology to	Students find and maximize the productive value of existing and new technology to	
enhance productivity	accomplish workplace tasks and solve workplace problems. They are flexible and	
increase collaboration	adaptive in acquiring new technology. They are proficient with ubiquitous	
and communicate	technology applications. They understand the inherent risks-personal and	
effectively.	organizational-of technology applications, and they take actions to prevent or	
	mitigate these risks.	
Work productively in	Students positively contribute to every team, whether formal or informal. They	
teams while using	apply an awareness of cultural difference to avoid barriers to productive and	
cultural/global	positive interaction. They find ways to increase the engagement and contribution of	
competence.	all team members. They plan and facilitate effective team meetings.	

Standards			
Standard #	Standard Description	Student Learning Objective	Clarification Statement
MS-ESS2-4	Earth's Systems	Develop a model to describe	Emphasis is on the ways
		the cycling of water through	water changes its state as it
		Earth's systems driven by	moves through the multiple
		energy from the sun and the	pathways of the hydrologic
		force of gravity.	cycle. Examples of models
			can be conceptual or
			physical.] [Assessment
			Boundary: A quantitative
			understanding of the latent
			heats of vaporization and
			fusion is not assessed.]
MS-ESS2-5	Earth's Systems	Collect data to provide	Emphasis is on how air
		evidence for how the motions	masses flow from regions of

Version Update: August 2025 48

•		and complex interactions of	high pressure to low
		air masses results in changes	pressure, causing weather
		in weather conditions.	(defined by temperature,
			pressure, humidity,
			precipitation, and wind) at a
			fixed location to change over
			time, and how sudden
			changes in weather can result
			when different air masses
			collide. Emphasis is on how
			weather can be predicted
			within probabilistic ranges.
			Examples of data can be
			provided to students (such as
			weather maps, diagrams, and
			visualizations) or obtained
			through laboratory
			experiments (such as with
			condensation).] [Assessment
			Boundary: Assessment does
			not include recalling the
			names of cloud types or
			weather symbols used on
			weather maps or the reported
			diagrams from weather
			stations.]
MS-ESS2-6	Earth's Systems	Develop and use a model to	Emphasis is on how patterns
		describe how unequal heating	vary by latitude, altitude, and
		and rotation of the Earth	geographic land distribution.
		cause patterns of atmospheric	Emphasis of atmospheric
		and oceanic circulation that	circulation is on the
		determine regional climates.	sunlight-driven latitudinal
			banding, the Coriolis effect,
			and resulting prevailing
			winds; emphasis of ocean
			circulation is on the transfer
			of heat by the global ocean
			convection cycle, which is
			constrained by the Coriolis
			effect and the outlines of
			continents. Examples of
			models can be diagrams,
			maps and globes, or digital
			representations.]

version Update: August 2025		49
		[Assessment Boundary:
		Assessment does not include
		the dynamics of the Coriolis
		effect.]

40

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

• Process should be modified: higher order thinking skills, open-ended thinking, discovery

- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources