Mississippi
 ALGEBRA I
 Pacing Guide (Semester)

Note: The Mississippi College- and Career-Readiness Standards describe the varieties of expertise that mathematics educators should seek to develop in their students. While they are not specifically stated in this pacing guide, students should be developing these skills throughout the school year.

Unit	Standards	Major Topics/Concepts
Quantities	$\begin{aligned} & \text { N-RN. } 3 \\ & \text { N-Q. } 1 \\ & \text { N-Q. } 2 \\ & \text { N-Q. } 3 \end{aligned}$	Explain why: - the sum or product of two rational numbers is rational; - the sum of a rational number and an irrational number is irrational; and - the product of a nonzero rational number and an irrational number is irrational. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. Define appropriate quantities for the purpose of descriptive modeling. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
Expressions and Equations	A-SSE.1a A-SSE.1b A-CED. 1 A-CED. 3 A-CED. 4 A-REI. 1 A-REI. 3	Interpret expressions that represent a quantity in terms of its context. \checkmark Interpret parts of an expression, such as terms, factors, and coefficients. \checkmark Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. Rearrange formulas to highlight a quantity of interest using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting

Unit	Standards	Major Topics/Concepts
		from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Introduction to Functions	$\begin{gathered} \text { F-IF. } 1 \\ \text { F-IF. } 2 \\ \text { F-IF. } 4 \\ \text { F-IF. } 5 \\ \text { F-IF. } 6 \end{gathered}$	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$. Use function notation; evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
One-Variable Statistics	$\begin{aligned} & \text { S-ID. } 1 \\ & \text { S-ID. } 2 \\ & \text { S-ID. } 3 \end{aligned}$	Represent data with plots on the real number line (dot plots, histograms, and box plots). Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
Analyzing Expressions and Graphing	A-APR. 1 A-SSE.1a A-SSE.1b A-SSE. 2 A-CED. 2 A-REI. 10	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. Interpret expressions that represent a quantity in terms of its context.

Unit	Standards	Major Topics/Concepts
		Interpret parts of an expression, such as terms, factors, and coefficients. \checkmark Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P. Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
Linear Functions	F-IF. 2 F-IF. 3 F-IF. 4 F-IF. 5 F-IF. 6 F-IF.7a F-IF. 9 F-LE.1b F-LE. 2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. \checkmark Graph linear and quadratic functions and show intercepts, maxima, and minima. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one

Unit	Standards	Major Topics/Concepts
		quadratic function and an algebraic expression for another, say which has the larger maximum. Distinguish between situations that can be modeled with linear functions. $\checkmark \quad$ Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

Unit	Standards	Major Topics/Concepts
		Solve systems of linear equations algebraically, exactly, and graphically while focusing on pairs of linear equations in two variables.
		Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g$ (x) intersect are the solutions of the equation $f(x)=g(x) ;$ find the solutions approximately (e.g., using technology to graph the functions, make tables of values, or find successive approximations). Include cases where $f(x)$ and/or $g(x)$ are linear, quadratic, absolute value, and
		exponential functions.
		Graph the solutions to a linear inequality in two variables as a
Functions		
half-plane (excluding the boundary in the case of a strict		
inequality), and graph the solution set to a system of linear		
inequalities in two variables as the intersection of the		
corresponding half-planes.		

Unit	Standards	Major Topics/Concepts
		Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately (e.g., using technology to graph the functions, make tables of values, or find successive approximations). Include cases where $f(x)$ and/or $g(x)$ are linear, quadratic, absolute value, and exponential functions. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. \checkmark Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^{t} can be written as $\left[1.15^{1 / 12}\right]^{12 t} \approx 1.012^{12 t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. \checkmark Graph square root and piecewise-defined functions, including absolute value functions. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. Write a function that describes a relationship between two quantities.

Unit	Standards	Major Topics/Concepts
		\checkmark Determine an explicit expression or steps for calculation from a context. Identify the effect on the graph of replacing $f(x)$ by $f(x)+k$, $k \cdot f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases, and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Distinguish between situations that can be modeled with linear functions and with exponential functions. \checkmark Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals. \checkmark Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. \checkmark Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). Interpret the parameters in an exponential function in terms of the context.
Quadratic Functions	A-SSE.1a A-SSE.1b A-SSE. 2 A-SSE.3a A-SSE.3b A-APR. 1 A-APR. 3 A-CED. 1 A-CED. 2 A-REI.4a A-REI.4b A-REI. 10 A-REI. 11 F-IF. 2 F-IF. 4 F-IF. 5 F-IF.7a F-IF.7b F-IF.8a F-IF. 9 F-BF.1a F-BF. 3	Interpret expressions that represent a quantity in terms of its context. \checkmark Interpret parts of an expression, such as terms, factors, and coefficients. \checkmark Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P. Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. \checkmark Factor a quadratic expression to reveal the zeros of the function it defines. \checkmark Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Unit	Standards	Major Topics/Concepts
		Graph functions expressed symbolically, and show key features of the graph, by hand in simple cases and using technology for more complicated cases. \checkmark Graph functions (linear and quadratic) and show intercepts, maxima, and minima. \checkmark Graph square root and piecewise-defined functions, including absolute value functions. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. \checkmark Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. Write a function that describes a relationship between two quantities. \checkmark Determine an explicit expression or steps for calculation from a context. Identify the effect on the graph of replacing $f(x)$ by $f(x)+k$, $k \cdot f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases, and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Final Comprehensive Assessment (covering all content)		

