NEW MILFORD PUBLIC SCHOOLS

New Milford, Connecticut

Math 7

December 2021

New Milford Board of Education

Wendy Faulenbach, Chairperson

Pete Helmus, Vice Chairperson

Olga I. Rella, Secretary

Tammy McInerney, Assistant Secretary

Eric Hansell

Brian McCauley

Tom O'Brien

Leslie Sarich

Keith A. Swanhall Jr

Superintendent of Schools

Ms. Alisha DiCorpo

Assistant Superintendent

Mrs. Holly Hollander

Authors of Course Guide

Mrs. Katelynn Oviatt

BOE Approved March 2022

New Milford's Mission Statement

The mission of the New Milford Public Schools, a collaborative partnership of students, educators, family and community, is to prepare each and every student to compete and excel in an ever-changing world, embrace challenges with vigor, respect and appreciate the worth of every human being, and contribute to society by providing effective instruction and dynamic curriculum, offering a wide range of valuable experiences, and inspiring students to pursue their dreams and aspirations.

Math 7

Grade 7

In grade 7, students will extend their understanding of ratios and rates and apply this to develop an understanding of proportionality. With this, students will graph proportional relationships and understand unit rate as a measure of steepness of the line, solve a wide variety of proportional relationships problems, with a focus on percent problems, and solve problems involving scale drawings. Students will develop a better understanding of numbers, recognizing fractions, decimals (as repeating or terminating), and percents as different representations of rational numbers. They will study performing addition, subtraction, multiplication, and division operations using all rational numbers. This study will include viewing negative numbers in terms of everyday context. Students will continue to study area and build upon their knowledge solving problems involving area and circumference of a circle and surface area of three-dimensional objects. Also, students will solve real-world and mathematical problems involving area, surface area, and volume of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. They will begin informal work with random sampling to generate data sets and learn about the importance of representative samples for drawing inferences. During all these critical areas, students are encouraged to apply their critical thinking through word problems.

Pacing Guide

Unit Title:	Time:
Unit 1 - Integers and Rational Numbers	6 weeks
Unit 2 - Expressions	3 weeks
Unit 3 - Equations and Inequalities	5 weeks
Unit 4 - Ratios and Proportions	6 weeks
Unit 5 - Percents	4 weeks
Unit 6 - Probability and Statistics	4 weeks
Unit 7 - Geometry	5 weeks

ESTABLISHED GOALS: CCSS.MATH.CONTENT.7.NS.A.1

Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

CCSS.MATH.CONTENT.7.NS.A.2

Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.

CCSS.MATH.CONTENT.7.NS.A.3

Solve real-world and mathematical problems involving the four operations with rational numbers.

Students will be able to independently use their learning to extend their understanding and application of rational numbers.

	Meaning		
	UNDERSTANDINGS	ESSENTIAL QUESTIONS	
d	 ONDERSTANDINGS Objects and sets of objects can be given numerical descriptions. When objects/numbers are combined, mathematical rules guarantee the resulting quantity. A limited set of symbols can be used to represent numerical descriptions and relationships. Mathematical symbols (e.g. period, line) represent quantities and operations in agreed upon ways (e.g. decimal place holders, line to separate numerator from denominator). Every problem is a member of a category of problems that has a similar structure and set of characteristics. Recognition of patterns and structures fosters efficiency in solving problems. Mastery of basic facts and rules maximizes conceptual and procedural fluency. 	 ESSENTIAL QUESTIONS How do I describe this object/number or set of objects/numbers? What is the value of this number/ relationship and how can I represent it in different ways? How do I use my number sense to perform operations? What value(s) can I use/substitute to make this relationship true? What characteristics/attributes define this type of problem? What does the solution represent? How does understanding the pattern/structure help me solve the problem? How does being fluent with basic facts and rules help me solve a complex problem? 	
		• • • •	
	Acq	Students will be skilled at	
		Sudents will be skilled ut	
	- Opposites	and negative numbers	
	- Rational Number	 Comparing and order positive and negative 	
	- Order of Operations	numbers rational numbers (fractions, decimals	
	- Terminating Decimal	and zero) and locate them on a number line	
	- Absolute Value	 Developing algorithms for adding, subtracting, 	
	- Additive Inverse	multiplying and dividing positive and negative	
	BOE Approved March 2022		

	 Commutative Property Associative Property Multiplicative Inverse Repeating Decimal Integers Negative Numbers Positive Numbers Expressions Fractions Mathematical Sentence Number Line Number Sentence Operations 	 numbers Writing mathematical sentences to show relationships Writing/using related fact families for adding and subtracting and multiplying and dividing to solve simple equations Using parentheses and rules for order of operations in computation Using positive and negative numbers to model and answer questions about problem situations Understanding the relationship between a positive and negative number and its opposite (additive inverse)
--	--	---

Code	Evaluative Criteria	Assessment Evidence
T,M,A	Rubric Criteria:	PERFORMANCE TASK(S):
	Mathematical Concepts:	Title: Football Night
	4 - Explanation shows complete understanding of	Goal: Students will perform operations with integers to find averages, plot data
	mathematical concepts to solve problems involving	on number lines, evaluate formulas, determine profit and money spent, and
	operations with rational numbers.	compare data relating to high school football.
	3 - Explanation shows substantial understanding of	Role: Statistician
	mathematical concepts to solve problems involving	Audience: Athletic Director, Principal, Parents
	operations with rational numbers.	Situation: Jenna is the statistician for Midtown High School. She records and
	2 - Explanation shows some understanding of	compiles the statistics for the football team. So far this season she has recorded
	mathematical concepts to solve problems involving	the final scores of the games for Midtown and its biggest rival, Bayshore High
	operations with rational numbers.	School.
	1 - Explanation shows very limited understanding of	Product or Performance: Detailed responses, showing all work.
	mathematical concepts to solve problems involving	Standards for Success: A scoring rubric is shared with students at the onset of
	operations with rational numbers OR is not written.	the project.
	Strategy/Procedures:	
	4 - Uses an efficient and effective strategy to solve the	
	operations with rational numbers.	
	3 - Uses an effective strategy to solve the operations	
	with rational numbers.	
	2 - Sometimes uses an effective strategy to solve the	
	operations with rational numbers, but does not do it	
	consistently.	
	1 - Rarely uses an effective strategy to solve the	
	operations with rational numbers.	
	Mathematical Errors:	
	4 - 90-100% of the steps and solutions have no	
	mathematical errors.	
	3 - Almost all (85-89%) of the steps and solutions have	
	no matnematical errors.	
	2 - Most (75-84%) of the steps and solutions have no	
	mathematical errors.	
	1 - Wore than 75% of the steps and solutions have	
	Completion:	
	Completion:	
	4 - All problems are completed.	

3 - 75% of all problems are completed.	
2 - 50% of all problems are completed.	
1 - 25% or less of problems are completed.	
Neatness and Organization:	
4 - The work is presented in a neat, clear, organized	
fashion that is easy to read.	
3 - The work is presented in a neat and organized	
fashion that is usually easy to read.	
2 - The work is presented in an organized fashion but	
may be hard to read at times.	
1 - The work appears sloppy and unorganized. It is	
hard to know what information goes together.	
	OTHER EVIDENCE:
Т ,М, А	Embedded Assessment 1: Adding and Subtracting Integers
Т, М, А	Embedded Assessment 2: Operations with Rational Numbers (Adding,
	Subtracting, Multiplying, Dividing)
T,M,A	Common Unit Test: Order Numbers, Operations with Rational Numbers, Order
	of Operations, Distributive Property, Fact Families, Equivalent Numerical
M,A	Expressions
	Skill Check: Daily warm-ups
M,A	Prompt: In what kind of situations would it be beneficial and not beneficial to
	use fractions, integers, and decimals & does it really matter what kind of rational
	number we use?
T,M,A	Homework: Almost daily

Code	Pre-Assessment	
	- Rational Number Operations CFA	
T,M,A	Summary of Key Learning Events and Instruction	Progress Monitoring
М	• Opening Activity: Have two students (A and B) stand at the front	- IXL
	of the class with a string between them. The teacher holds a piece	- Homework
	of paper with the number 0 on it. State that the distance between	- Exit Tickets
	A and B is 10 units. Pose the following questions while placing the	
	sign with 0 on it in the right spots; if the teacher is at the	
	midpoint, what value is A and B? Who is closer to the teacher (0)?	
	How far away from 0 (teacher) are you? If the teacher moves	
	closer to A so that A is 3, what value is B? Who is closer to the	
	teacher (0)? How far away is each person from the teacher (0)? If	
	the teacher moves closer to B so that B is -2, what value is A? Who	
	is closer to the teacher (0)? How far away is each person from the	
	teacher (0)?What numbers are both 6 units away from 0?	
T,A	 Teacher will present a lesson on integers and absolute value. 	
	Discuss how integers and absolute value are used in real life	
А	 Teacher will present a lesson on adding integers with counter 	
	chips and number lines to discover algorithms. At the end of the	
	lesson, perform a lesson check by asking students to discuss with	
	a partner the following questions: If the sum of two integers are	
	negative, are both integers negative? If the sum of two integers	
	are positive, are both integers positive?	
A	 Teacher presents a lesson on subtracting integers with the usage 	
	of counter chips. Teacher poses a question: how would you take 4	
	counter chips away from 2? Students will evaluate how they can	
	perform the subtraction with the usage of zero pairs.	
М	• Teacher will present a lesson on adding and subtracting integers	
	to solve real-world problems. Students will think, pair, share their	
	problem solving for each application and make revisions along the	
	way.	
A	 Assess students by having them take a quiz 	
A	Return and discuss quiz, clarify any misunderstandings	
M	• Guess My Rule: teacher will put three separate number sequences	
	on the board and ask the students to discuss with a partner the	

	possible rule and the next three numbers in each sequence.
A	• Teacher will present a lesson on multiplying and dividing integers.
	Students will work in pairs to determine patterns for multiplying
	with different signs and same sign integers. The teacher will
	prompt students to rewrite multiplication problems as division
	problems to determine that the multiplication rules also apply to
	division rules.
Μ	 The teacher will present a lesson on multiplying and dividing
	integers to solve real-world problems.
Т	Academic Prompt: In what kind of situations would it be beneficial
	to use integer rules with rational numbers?
Μ	 Have students brainstorm how they might combine integer,
	fraction, and decimal algorithms to solve applications
Т	 The teacher will present a lesson on adding and subtracting
	rational numbers using a financial aspect (bank balance, debt,
	paychecks). Students will brainstorm how adding and
	subtracting with integers relates to adding and subtracting with
	rational numbers.
А	 The teacher will present a lesson on multiplying and dividing
	rational numbers
А	 Students will partake in a classroom maze using their integers
	rules with integers and rational numbers. Students will move from
	one question to the next based on the answer they get at each
	problem. Students will self-evaluate and revise their work as they
	continue the maze as they may get a wrong answer which will
	send them back to a problem they have already completed.
	Students will then need to problem solve to find where they made
	their mistake.
А	 Assess students by having them take a quiz
А	 Return and discuss quiz, clarify any misunderstandings
Μ	Academic Prompt: Does it really matter what order operations are
	performed?
А	 The teacher will pre-assess students on order of operations
	through a series of problems in a warm up. Based on their
	answers, the teacher will present a lesson on order of operations
А	• The teacher will present a lesson on distributive property and
	applications
Μ	• The teacher will observe students as they perform and discuss
	error analysis on order of operations and distributive property

Т	• Academic Prompt: If you are told that a rectangular garden has a	
	perimeter of 36 feet, how many different sized gardens can you	
	create?	
Т	 Students will work in pairs to create different dimensions for a 	
	garden with a 36 foot perimeter. The teacher will then discuss	
	how they know these all work as possible gardens and explain	
	how these are what equivalent expressions are.	
А	 The teacher will present a lesson on fact families and find the 	
	missing value	
Т	 Performance task: Students will perform operations with integers 	
	to find averages, plot data on number lines, evaluate formulas,	
	determine profit and money spent, and compare data relating to	
	high school football.	
А	 Review with students concepts for upcoming test 	
А	 Students take test on ordering rational numbers, all four 	
	operations with rational numbers, order of operations,	
	distributive property applications, equivalent numerical	
	expressions, fact families/finding the missing value	
А	• Conclude the unit with the return and discussion of the test,	
	clarify any misunderstandings	

ESTABLISHED GOALS:	Tr	ransfer
CCSS.MATH.CONTENT.7.EE.A.1		
Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.	Students will be able to independently use their learning to understand the importance of the language of algebra and algebraic thinking in everyday real world mathematical experiences.	
Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related.	M	eaning
For example, a + 0.05a = 1.05a means that "increase by 5%" is the same as "multiply by 1.05."	UNDERSTANDINGS - Expressions are foundational for Algebra; they serve as building blocks for work with	ESSENTIAL QUESTIONS Of the many possible equivalent expressions, how does each represent the meaning of a given
CCSS.MATH.CONTENT.7.EE.A.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making \$25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or \$2.50, for a new	 Two or more expressions may be equivalent, even when their symbolic forms differ. A relatively small number of symbolic transformations can be applied to expressions to yield equivalent expressions. Variables are tools for expressing mathematical ideas clearly and concisely. They have many different meanings, depending on the context and purpose. Using variables permits writing expressions whose values are not known or vary under different circumstances. 	 Of the many possible equivalent expressions, which of them best represents the meaning of the situation? How does changing one term of an expression change the meaning of the context? How can you rewrite expressions to help you solve problems? How can you solve problems by using expressions, equations, and inequalities?
salary of \$27.50. If you want to	Acq	luisition

place a towel bar 9 3/4 inches	Students will know	Students will be skilled at
long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation. CCSS.MATH.CONTENT.7.NS.A.3 Solve real-world and mathematical problems involving the four operations with rational numbers. <i>Computations with rational</i> <i>numbers extend the rules for</i> <i>manipulating fractions to</i> <i>complex fractions.</i>	 Order of operations Combine like terms Distributive property Greatest common factor Expand an expression Coefficient Numerical Expression Constant term Variable Factor of an expression Commutative property Algebraic expression Simplest form Linear expression Substitution Evaluation 	 Evaluating numerical expressions with rational numbers using the order of operations. Writing and evaluating expressions for mathematical and contextual situations. Expanding and factoring expressions using the distributive property and the greatest common factor. Expanding and factoring expressions with negative rational numbers. Adding and simplifying expressions by combining like terms. Subtracting and simplifying expressions. Simplifying expressions by combining like terms and using the distributive property and properties of operations Writing and interpreting expressions in different ways to shed new meaning on a context. Substituting a correct value(s) for an unknown makes the mathematical statement/relationship true

Code	Evaluative Criteria	Assessment Evidence
T,M,A	Rubric Criteria:	PERFORMANCE TASK(S):
	Mathematical Concepts:	Title: Translating and Evaluating Cell Phone Plans
	4 - Explanation shows complete understanding of	Goal: This task requires students to translate verbal expressions describing cell
	mathematical concepts to solve problems involving	phone plans into algebraic expressions and evaluate these expressions to
	operations with rational numbers.	determine the most cost-effective plan.
	3 - Explanation shows substantial understanding of	Role: Picking the better plan
	mathematical concepts to solve problems involving	Audience: Teacher
	operations with rational numbers.	Situation: You want to get a cell phone plan including unlimited data, texting,
	2 - Explanation shows some understanding of	and calls for your first phone you are going to purchase this summer from Best
	mathematical concepts to solve problems involving	Buy. You need to compare all possible plans offered.
	operations with rational numbers.	Product or Performance: Detailed responses, showing all work.
	1 - Explanation shows very limited understanding of	Standards for Success: A scoring rubric is shared with students at the onset of
	mathematical concepts to solve problems involving	the project.
	operations with rational numbers OR is not written.	
	Strategy/Procedures:	
	4 - Uses an efficient and effective strategy to solve the	
	operations with rational numbers.	
	3 - Uses an effective strategy to solve the operations	
	with rational numbers.	
	2 - Sometimes uses an effective strategy to solve the	
	operations with rational numbers, but does not do it	
	consistently.	
	1 - Rarely uses an effective strategy to solve the	
	operations with rational numbers.	
	Mathematical Errors:	
	4 - 90-100% of the steps and solutions have no	
	mathematical errors.	
	3 - Almost all (85-89%) of the steps and solutions have	
	no mathematical errors.	
	2 - Most (75-84%) of the steps and solutions have no	
	mathematical errors.	
	1 - More than 75% of the steps and solutions have	
	mathematical errors.	
	Completion:	
	4 - All problems are completed.	
	3 - 75% of all problems are completed.	
	2 - 50% of all problems are completed.	

1 - 25% or less of problems are completed.	
Neatness and Organization:	
4 - The work is presented in a neat, clear, organized	
fashion that is easy to read.	
3 - The work is presented in a neat and organized	
fashion that is usually easy to read.	
2 - The work is presented in an organized fashion but	
may be hard to read at times.	
1 - The work appears sloppy and unorganized. It is	
hard to know what information goes together	
	OTHER EVIDENCE:
T,M,A	Embedded Assessment 1: Writing and reading algebraic expressions, combining
	like terms, distributive property, adding and subtracting linear expressions
T,M,A	Embedded Assessment 2: Evaluating expressions
T,M,A	Common Unit Test: Writing expressions, distributive property, combining like
	terms, equivalent expressions, constant, coefficient, variable, like terms,
	evaluating expressions
M,A	Skill Check: Daily warm-ups
M,A	Prompt: How can I justify that multiple representations in the context of a
	problem are equivalent expressions?
T,M,A	Homework: Almost daily

Code	- Equations CFA		
	- Rational Number Operations Unit Test		
	- Rational Number Operations CFA		
	- Expressions Pre-Assessment		
T,M,A	Summary of Key Learning Events and Instruction	Progress Monitoring	
Μ	• Opening Activity: As students enter the classroom, the teacher	- IXL	
	will provide each one with an envelope containing two	- Homework	
	quadrilaterals and four triangles; students will be instructed not to	- Exit lickets	
	open their envelopes. The students will be divided into teams of		
	two to complete parts (a) and (b). Each envelope contains a		
	number of thangles and a number of quadriaterals. For this		
	represent the number of quadrilaterals. Each group will work		
	through the following problems:		
	• (a) Write an expression using t and a that represents the		
	total number of sides in your envelope. Explain what the		
	terms in your expression represent.		
	 (b) You and your partner have the same number of 		
	triangles and quadrilaterals in your envelopes. Write an		
	expression that represents the total number of sides that		
	you and your partner have. If possible, write more than		
	one expression to represent this total.		
	As students work to discuss the problems, the teacher can scaffold		
	those that are struggling by discussing a numerical expression,		
	such as $2 \times 3 + 6 \times 4$, as an example where there are two triangles		
	and six quadrilaterals. The class will then discuss the variations of		
	the expressions in part (b) and whether those variations are		
	equivalent and how this relates to their unit.		
A	 Introduce the essential questions and key terms The teach any ill groups at a location and key terms 		
A	 The teacher will present a lesson on parts of expression, reading, and writing expressions. Students will review their learning. 		
	through practice of their skills with a partner to allow for		
	discussion and reflection		
N/	Academic Prompt: How can Luse properties to justify that		
171	expressions are equivalent?		
А	 The teacher will present a lesson on equivalent expressions using 		

	the associative and commutative properties.	
Μ	• The teacher will present a lesson on combining like terms.	
	Students will complete an error analysis on simplified expressions	
	where combining like terms was performed.	
Μ	• Academic Prompt: How do you use integer rules and combine like	
	terms to simplify the addition and subtraction of multiple	
	algebraic expressions?	
А	• The teacher will present a lesson on adding and subtracting linear	
	expressions. Students will complete a self-assessment of real	
	world applications involving adding and subtracting linear	
	expressions.	
Т	• The teacher will present a lesson on distributive property with	
	variables. The teacher will display three rectangles with side	
	lengths that are either numbers or expressions. Students will be	
	asked to write the area of each rectangle. Students will use their	
	knowledge from distributing with numerical expressions to solve	
	algebraic expressions with distributive property. The teacher will	
	ask for all students to share their answers and as a class will	
	discuss if all work and if so, are they equivalent to each other.	
А	 Assess students by having them take a quiz 	
А	• Return and discuss quiz, clarify any misunderstandings	
Т	• The teacher will present a lesson on factoring expressions. The	
	teacher will display three rectangle area models on the board with	
	the area expression written in each rectangle and an expression	
	will be written with missing parts to display the area. Students will	
	be instructed to determine what the possible values can be used	
	to make the expressions true. The class will discuss possible values	
	for each model. The teacher will pose the following questions: are	
	the expressions written for each area model equivalent to the	
	original expression given? How can we use the distributive	
	property to find factors of an expression? Students will take a	
	self-assessment exit ticket on factoring the greatest common	
	factor, factoring a rational number, factoring a negative number,	
	and describing the relationship between using the distributive	
	property to simplify an expression and factor an expression.	
	• The teacher will present a lesson on evaluating expressions. The	
Μ	students will use their prior knowledge of order of operations to	
	evaluate expressions for given values. The students will review	
	and assess their learning through a station activity where they will	

 A Students take a test on parts of an expression, reading and writing expressions, combining like terms, adding and subtracting linear expressions, distributive property, factoring an expression, and evaluating expressions. Conclude the unit with the return and discussion of the test, clarify any misunderstandings 	Т	 use this skill in real world problems (example for a station - finding the area of a given shape from an expression (the area formula) and measurements they are given). Performance Task: This task requires students to translate verbal expressions describing cell phone plans into algebraic expressions and evaluate these expressions to determine the most cost-effective plan. Review with students concepts for upcoming test 	
 Conclude the unit with the return and discussion of the test, clarify any misunderstandings 	A A	 Students take a test on parts of an expression, reading and writing expressions, combining like terms, adding and subtracting linear expressions, distributive property, factoring an expression, and evaluating expressions. 	
	A	 Conclude the unit with the return and discussion of the test, clarify any misunderstandings 	

ESTABLISHED GOALS:

CCSS.MATH.CONTENT.7.EE.B.3

Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, ar decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate and assess the reasonablenes of answers using mental computation and estimation strategies. For example: If a woman making \$25 an hour gets a 10% raise, she will mal an additional 1/10 of her sala an hour, or \$2.50, for a new salary of \$27.50. If you want place a towel bar 9 3/4 inches long in the center of a door th is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.

CCSS.MATH.CONTENT.7.EE.B.4

Use variables to represent quantities in a real-world or mathematical problem, and Students will be able to independently use their learning to extend their understanding and application of equations and inequalities.

	Meaning		
nd s h t e; ss ke ary to s at I	 UNDERSTANDINGS Equations and inequalities are powerful tools that can be used to model and solve real-world situations with unknown quantities. Equations can be solved by reasoning about the arithmetic needed to uncover the value of the unknown. Equations can also be solved algebraically by using properties of operations and equality. Inequalities have infinite solutions, which can be represented graphically on a number line. In context, these solutions are sometimes constrained by what makes sense for the situation; for example, if solving for the maximum number of people who can fit onto a boat, the solution set would be limited to positive integers. 	 ESSENTIAL QUESTIONS What are some arithmetic tools you can use to solve real-life problems? When is it appropriate to use arithmetic tools and when is it appropriate to solve equations algebraically? What is the purpose of using inverse operations? When solving equations and inequalities, using inverse operations, how do you know whether to create a zero or a one? For equations such as 5(x+10)=25 and ²/₃(9x+6)=10, what are different methods for solving algebraically? What does your solution mean in the context of the problem? When solving a problem using both methods (arithmetic tools and algebraically), where do you see relationships in your work? Why and when would you reverse an inequality symbol? How do you interpret the graph of an inequality in terms of the context of the problem? 	
	Acq	uisition	
	Students will know	Students will be skilled at	
	 Equation Equivalent Equation Addition Property of Equality 	 Solving one-step equations with rational numbers. Solving equations in the forms my los = word 	
	- Addition Property of Equality	- Solving equations in the forms $px + q = r$ and	

construct simple equations and	- Subtraction Property of Equality	p(x + q) = ralgebraically
inequalities to solve problems	 Multiplication Property of Equality 	 Solving word problems leading to equations in the
by reasoning about the	 Division Property of Equality 	forms $px + q = r$ and $p(x + q) = r$
quantities.	- Solution	- Modeling with equations in the form $px + q = r$
CCSS.MATH.CONTENT.7.EE.B.4.A	- Substitution	and $p(x + q) = r$
Solve word problems leading to	- Inequality	 Solving and graphing one-step inequalities.
equations of the form $px + q = r$	- Solution Set	 Writing and solving inequalities in the forms
and $p(x + q) = r$, where p, q, and		px + q > ror px + q < rand p(x + q) > ror
r are specific rational numbers.		p(x+q) < r
Solve equations of these forms		- Solving inequalities with negative coefficients.
fluently. Compare an algebraic		- Solving word problems leading to inequalities in
solution to an arithmetic		the forms $px + q > ror px + q < rand$
solution, identifying the		p(x + q) > ror p(x + q) < r
sequence of the operations		 Modeling with inequalities.
used in each approach. <i>For</i>		
example, the perimeter of a		
rectangle is 54 cm. Its length is		
6 cm. What is its width?		
CCSS.MATH.CONTENT.7.EE.B.4.B		
Solve word problems leading to		
inequalities of the form px + q >		
r or px + q < r, where p, q, and r		
are specific rational numbers.		
Graph the solution set of the		
inequality and interpret it in		
the context of the problem. For		
example: As a salesperson, you		
are paid \$50 per week plus \$3		
per sale. This week you want		
your pay to be at least \$100.		
Write an inequality for the		
number of sales you need to		
make, and describe the		
solutions.		

Code	Evaluative Criteria	Assessment Evidence
T,M,A	Rubric Criteria:	PERFORMANCE TASK(S):
Code T,M,A	 Evaluative Criteria Rubric Criteria: Mathematical Concepts: 4 - Explanation shows complete understanding of mathematical concepts to solve problems involving operations with rational numbers. 3 - Explanation shows substantial understanding of mathematical concepts to solve problems involving operations with rational numbers. 2 - Explanation shows some understanding of mathematical concepts to solve problems involving operations with rational numbers. 2 - Explanation shows some understanding of mathematical concepts to solve problems involving operations with rational numbers. 1 - Explanation shows very limited understanding of mathematical concepts to solve problems involving operations with rational numbers. 1 - Explanation shows very limited understanding of mathematical concepts to solve problems involving operations with rational numbers. 3 - Uses an efficient and effective strategy to solve the operations with rational numbers. 3 - Uses an effective strategy to solve the operations with rational numbers. 2 - Sometimes uses an effective strategy to solve the operations with rational numbers. 2 - Sometimes uses an effective strategy to solve the operations with rational numbers, but does not do it consistently. 1 - Rarely uses an effective strategy to solve the operations with rational numbers. 	Assessment Evidence PERFORMANCE TASK(S): Title: Pen Pal Goal: This task requires students to convert cake baking temperatures between Celsius and Fahrenheit by solving equations. Role: Baker Audience: Family Situation: Darla's european pen pal sent her a recipe for baking a cake but the recipe calls for the oven to be set to 170 degrees celsius. Darla's oven is only in fahrenheit so she found a formula she could use to determine the degrees in fahrenheit. Product or Performance: Detailed responses, showing all work. Standards for Success: A scoring rubric is shared with students at the onset of the project.
	4 - 90-100% of the steps and solutions have no	
	mathematical errors.	
	3 - Almost all (85-89%) of the steps and solutions have	

no mathematical errors.	
2 - Most (75-84%) of the steps and solutions have no	
mathematical errors.	
1 - More than 75% of the steps and solutions have	
mathematical errors.	
Completion:	
4 - All problems are completed.	
3 - 75% of all problems are completed.	
2 - 50% of all problems are completed.	
1 - 25% or less of problems are completed.	
Neatness and Organization:	
4 - The work is presented in a neat, clear, organized	
fashion that is easy to read.	
3 - The work is presented in a neat and organized	
fashion that is usually easy to read.	
2 - The work is presented in an organized fashion but	
may be hard to read at times.	
1 - The work appears sloppy and unorganized. It is	
hard to know what information goes together	
	OTHER EVIDENCE:
T,M,A	Embedded Assessment 1: Solving two step equations
T,M,A	Common Unit Test: Two step equations and applications
T,M,A	Common Unit Test: Two step inequalities and applications
M,A	Skill Check: Daily warm-ups
M,A	Prompt: How can equations be used to solve everyday problems?
M,A	Prompt: How are the solutions to inequalities different from the solutions to
	equations?
T,M,A	Homework: Almost daily

Code	Pre-Assessment		
	- Equations CFA		
	 Rational Number Operations CFA 		
	 Equations and Inequalities Pre-Assessment 		
T,M,A	Summary of Key Learning Events and Instruction	Progress Monitoring	
А	 The teacher will present a review lesson on one step equations 	- IXL	
	based on how students performed on the pre-assessment	- Homework	
Т	 Opening Activity: The teacher writes the number 4 on an index 	- Exit Tickets	
	card and places it in an envelope. On the outside of the envelope,		
	the teacher writes 15. Placing the envelope to their head, the		
	teacher states, "I'm thinking of a number. When I double the		
	number and add 7, I get the answer 15." Show the number 15 on		
	the envelope. Ask the students what number you started with.		
	Ask the students to explain how they arrived at their answers.		
	Open the envelope and show the students the 4 on your index		
	card. Ask the students why they didn't divide by 2 first and then		
	subtract 7. Explain that this puzzle is what we will be doing in the		
	unit.		
М	 The teacher will present a lesson on solving two step equations 		
	using algebra tiles. With the tiles, students will discover rules that		
	can be used to solve. As a class the rules made will be examined		
	and applied to examples. The teacher will make sure to address		
	the idea of doing multiplication and/or division first instead of		
	adding and/or subtracting. The teacher will show the difference to		
	show that both ways do in fact give the same answer however		
	one will either involve fractions or distributive property. The		
	teacher will then pose the question about which way students		
	prefer to solve (most students want to avoid fractions).		
А	 Assess students with a quiz. 		
А	 The teacher will present a lesson on real life applications of two 		
	step equations. Students will work in pairs to use their prior		
	knowledge of expressions to form. Students will self-assess their		
	knowledge through an error analysis exit ticket.		
А	 The teacher will present a lesson on two step equations that 		
	involve clearing out fractions, decimals, and distributive property.		
	Students will assess their learning through a "go fish" activity		
	where the students have a deck of cards. Some cards will have		

		an an it and athen will be use the a substitute. Charlenge will	
		answers on it and others will have the equation. Students will	
		have to solve the equation and then ask their peers if they have	
		the solution (A suggestion is to tell students that they are only	
		able to ask if their partner has solutions since the other option	
		would be too time consuming).	
A	•	Review with students concepts for upcoming test	
A	•	Students take a test on two step equations and applications.	
А	•	Discussion of the test, clarify any misunderstandings	
Т	•	The teacher will open the lesson by posing the question: Does	
		anyone know the guidelines for suitcases at an airport? If the	
		maximum weight is 50lbs, what inequality does this suggest?	
A	•	The teacher will present a review lesson on one step inequalities	
		based on the students pre-assessment needs.	
А	•	The teacher will present a lesson on writing and graphing	
		solutions to two step inequalities. Students will display their	
		knowledge in a "beat the time" game against a partner. Students	
		will be given 5 minutes for each round to either write the	
		inequalities, check the solution, or graph the solution. After each	
		round, students are to discuss their answers with their peers to	
		determine if they are in need of revision.	
А	•	The teacher will present a lesson on solving two step inequalities.	
		The teacher will prompt the students to remember that the rules	
		for solving one step inequalities were similar to those of	
		equations, so one would conclude that two steps will work in the	
		same manner. Remind students that multiplication and division of	
		negatives will flip the sign.	
Т	•	Performance Task: This task requires students to convert cake	
		baking temperatures between Celsius and Fahrenheit by solving	
		equations.	
А	•	Review with students concepts for upcoming test	
А	•	Students take a test on two step inequalities and applications.	
А	•	Conclude the unit with the return and discussion of the test.	
		clarify any misunderstandings	
		, ,	

ESTABLISHED GOALS: CCSS.MATH.CONTENT.7.RP.A.1

Students will be able to independently use their learning to extend their understanding and application of ratios and Compute unit rates associated proportions. with ratios of fractions. including ratios of lengths, areas and other quantities Meanina measured in like or different UNDERSTANDINGS ESSENTIAL QUESTIONS units. For example, if a person A proportional relationship between two How do you find and compare unit rates? walks 1/2 mile in each 1/4 quantities is a collection of equivalent ratios, How can you use tables and equations to identify *hour, compute the unit rate as* related to each other by a constant of and describe proportional relationships? the complex fraction 1/2/1/4 How can you use graphs to represent and analyze proportionality. miles per hour, equivalently 2 Proportional relationships can be represented proportional relationships? miles per hour. in different, related ways, including a table, CCSS.MATH.CONTENT.7.RP.A.2 equation, graph, and written description. Recognize and represent Knowing one representation provides the proportional relationships information needed to represent the between quantities. relationship in a different way. CCSS.MATH.CONTENT.7.RP.A.2.A A unit rate, associated with a ratio a: bis a/bDecide whether two quantities or b/a units of one quantity per 1 unit of are in a proportional another quantity. Unit rates are represented relationship, e.g., by testing for in equations of the form y = kxequivalent ratios in a table or and in graphs of proportional relationships as graphing on a coordinate plane the ordered pair (1, r). and observing whether the There are many applications that can be graph is a straight line through solved using proportional reasoning, including the origin. problems with price increases and decreases, CCSS.MATH.CONTENT.7.RP.A.2.B commissions, fees, unit prices, and constant Identify the constant of speed. proportionality (unit rate) in Acauisition tables, graphs, equations, Students will know... Students will be skilled at... diagrams, and verbal Solving ratio and rate problems using double constant of proportionality descriptions of proportional number lines, tables, and unit rate. equivalent ratio relationships. Representing proportional relationships in tables, ratio

Transfer

CCSS.MATH.CONTENT.7.RP.A.2.C

Represent proportional	- unit rate	and define the constant of proportionality.
relationships by equations. For	- part to part ratio	 Determining the constant of proportionality in
example, if total cost t is	 part to whole ratio 	tables, and using it to find missing values.
proportional to the number n of	- commission	 Writing equations for proportional relationships
items purchased at a constant	- rate	presented in tables and graphs.
price p, the relationship	 dependent variable 	 Writing equations for proportional relationships
between the total cost and the	- proportion	from word problems.
number of items can be	 independent variable 	 Representing proportional relationships in graphs.
expressed as t = pn.	 proportional relationship 	 Interpreting proportional relationships
CCSS.MATH.CONTENT.7.RP.A.2.D	 direct variation 	represented in graphs.
Explain what a point (x, y) on	 scale image/drawing 	 Comparing proportional and non-proportional
the graph of a proportional	- scale factor	relationships.
relationship means in terms of	- scale	- Determining if relationships are proportional or
the situation, with special	- corresponding	non-proportional.
attention to the points (0, 0)		 Making connections between the four
and (1, r) where r is the unit		representations of proportional relationships
rate.		- Using different strategies to represent and
CCSS.MATH.CONTENT.7.G.A.1		recognize proportional relationships
Solve problems involving scale		Finding the unit rate of ratios involving fractions
drawings of geometric figures,		- Finding the unit rate of ratios involving fractions.
including computing actual		- Finding the unit fate and using it to solve
lengths and areas from a scale		Solving ratio and rate problems by setting up a
drawing and reproducing a		- Solving fatio and fate problems by setting up a
scale drawing at a different		Defining and identifying scale images
scale.		- Defining and determining scale factor between
		two scale images. Use scale factor to draw scale
		imagos
		Light a scale to determine actual measurements
		- Using a scale to determine actual measurements.
		hetween locations
		- Using scales in floor plans to find actual
		- Using scales in noor plans to find actual moscurements and dimensions
		Computing actual areas from scale drawings
		- Computing actual areas from scale drawings.

Code	Evaluative Criteria	Assessment Evidence
T,M,A	Rubric Criteria:	PERFORMANCE TASK(S):
	Mathematical Concepts:	Title: Cereal
	4 - Explanation shows complete understanding of	Goal: This task challenges a student to use knowledge of proportional reasoning
	mathematical concepts to solve problems involving	and to use equivalent ratios. A student must be able to convert between
	operations with rational numbers.	representations of rational numbers to compare and order ratios. A student
	3 - Explanation shows substantial understanding of	must be able to interpret quantities and the associated units to interpret values
	mathematical concepts to solve problems involving	in the context of a real-world problem.
	operations with rational numbers.	Role: Nutritionist
	2 - Explanation shows some understanding of	Audience: Teacher, Family
	mathematical concepts to solve problems involving	Situation: You are a nutritionist and are trying to determine which cereal has the
	operations with rational numbers.	higher ratio of protein and determine how many grams of each cereal you would
	1 - Explanation shows very limited understanding of	need to consume a certain amount of protein.
	mathematical concepts to solve problems involving	Product or Performance: Detailed responses, showing all work.
	operations with rational numbers OR is not written.	Standards for Success: A scoring rubric is shared with students at the onset of
	Strategy/Procedures:	the project.
	4 - Uses an efficient and effective strategy to solve the	
	operations with rational numbers.	
	3 - Uses an effective strategy to solve the operations	
	with rational numbers.	
	2 - Sometimes uses an effective strategy to solve the	
	operations with rational numbers, but does not do it	
	consistently.	
	1 - Rarely uses an effective strategy to solve the	
	operations with rational numbers.	
	Nathematical Errors:	
	4 - 90-100% of the steps and solutions have no	
	mathematical errors.	
	3 - Almost all (85-89%) of the steps and solutions have	
	The final field of the stars and solutions have no $\frac{1}{2}$	
	2 - WIOSE (75-64%) OF THE STEPS and SOLUTIONS HAVE NO	
	1 - More than 75% of the steps and solutions have	
	mathematical errors	
	Completion:	
	4 - All problems are completed	
	4 - All problems die completeu.	

3 - 75% of all problems are completed.	
2 - 50% of all problems are completed.	
1 - 25% or less of problems are completed.	
Neatness and Organization:	
4 - The work is presented in a neat, clear, organized	
fashion that is easy to read.	
3 - The work is presented in a neat and organized	
fashion that is usually easy to read.	
2 - The work is presented in an organized fashion but	
may be hard to read at times.	
1 - The work appears sloppy and unorganized. It is	
 hard to know what information goes together	
	OTHER EVIDENCE:
	Embedded Assessment 1: Unit Rates
T,M,A	Embedded Assessment 2: Proportions
T,M,A	Embedded Assessment 3: Constant of Proportionality
T,M,A	Common Unit Test: Ratios, Proportions, Constant of Proportionality, Determine
T,M,A	proportional relationships from graphs, Construct direct variation equation
	Common Unit Test: find unit rate, determine proportional from ratios and
I,M,A	tables solve a proportion identify the constant of proportionality write diverse
	variation equation, scale drawings
	Skill Chack: Daily warm uns
	Skill Check. Daily wann-ups
M,A	Prompt : when do you use ratios to describe something using parts of a whole or
	parts of a part?
1, IVI, A	Homework: Almost daily

Code	Pre-Assessment	
	- Equations CFA	
	- Rational Number Operations CFA	
	- Proportions Pre-assessment	
T,M,A	Summary of Key Learning Events and Instruction	Progress Monitoring
Μ	 Opening Activity: The teacher will break the students up into 4 	- IXL
	equal groups. Each group will have a poster labeled "Graffiti Wall."	- Homework
	Students will be asked to brainstorm and record their ideas (e.g.,	- Exit Tickets
	terms, examples, pictures) onto the Graffiti Wall and share ideas	
	with their team. The following questions will be asked to prompt	
	student discussion:	
	 What do you know about ratios and proportions? 	
	 Are there any situations you can think of related to these words? 	
	 Is there anything you know of that is proportional? 	
	 What additional words do you associate with these 	
	words?	
	The teacher will display the posters at the front of the room and	
	the teams will share their Graffiti Wall with the whole class,	
	making connections and exploring different perspectives. The	
	teacher will explain that this unit will build on their prior	
	knowledge of ratios and proportions in the form of proportional relationships.	
A/M	• The teacher will present a lesson on ratios and ratio tables.	
	Students will use tables to discover patterns that they will learn	
	will form equivalent ratios.	
Т	• The teacher will present a lesson on rates and unit rates. Students	
	will practice calculating unit price using their method of choice.	
	Students will use unit rate in context to determine better deals,	
	and analyze when a smaller or larger unit rate is most desirable.	
А	 Assess students on a quiz. 	
А	 The teacher will present a lesson on identifying proportional 	
	relationships. Students participate in a series of activities where	
	one task is proportional and one is not. For each activity, they will	
	record the data in a t-chart and graph it. By comparing and	
	contrasting the two activities, students will see that Task 1 has a	
	ratio and forms a straight line through (0.0). Then given two new	

	scenarios, the students will have to determine if the data is
	proportional. Students will compare and contrast data that are
	proportional and data that are not proportional to come up with
	four big ideas about what it means to be proportional. Then given
	scenarios, tables, or fractions, the student will determine if the
	information is proportional or not.
А	• The teacher will present a lesson on writing and solving
	proportions. Students will work out three problems in groups of 4.
	They are each responsible for one of four methods— double-sided
	number line, using unit rate, graphing, or writing an equation.
	Then they will share how they solved it in their groups and then
	compare and contrast the methods. They will brainstorm the
	benefits to using each method
٨	 The teacher will present a lesson on graphs of proportional
~	relationships. Students will find unit rates and compare them to
	rate of change to discover that proportional relationships have a
	constant rate of change which is equal to the unit rate (constant
	of proportionality). Students should practice analyzing graphs that
	correspond to real world scaparios. Students should identify the
	contespond to real world scenarios. Students should identify the
	constant of proportionality as well as the contextual meaning of a
•	given point (emphasizing connection to unit rate).
A	• Assess students on a quiz.
A	• The teacher will present a lesson on direct variation. Students
	should write equations to model proportional relationships.
	Optionally, they can use the equations they write to solve
	proportional questions.
M	• The teacher will present a lesson on scale drawings. The students
	will use their knowledge of proportions to complete conversions
	between measurements. The students will work in groups to
	create a scale model of a certain part of the classroom (examples:
	a desk, a textbook, a computer, a notebook). Each group will place
	their scale model (with scale factor) at a station table. The groups
	will then rotate to each station table and use the scale model and
	scale factor to determine the actual measurements of the object.
	There should be no more than six groups.
Т	 Performance task: This task challenges a student to use
	knowledge of proportional reasoning and to use equivalent ratios.
	A student must be able to convert between representations of
	rational numbers to compare and order ratios. A student must be

A A	 able to interpret quantities and the associated units to interpret values in the context of a real-world problem Review with students concepts for upcoming test Students take a test on finding unit rate, determining proportionality from ratios and tables, solving a proportion, identifying the constant of proportionality, writing diverse variation equations, and scale drawings. 	
A	 Conclude the unit with the return and discussion of the test, clarify any misunderstandings 	

Unit 5: Percents

ESTABLISHED GOALS:		
CCSS.MATH.CONTENT.7.FF.A.2		

Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a + 0.05a = 1.05a means that "increase by 5%" is the same as "multiply by 1.05."

CCSS.MATH.CONTENT.7.EE.B.3

Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making \$25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or \$2.50, for a new salary of \$27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9

i i uniger		
Students will be able to independently use their learning to extend their understanding and application of percents.		
Ме	eaning	
 UNDERSTANDINGS Percentages can be used to understand the relationship between parts of quantities and the whole quantity. Percentages can also be used to understand how quantities change in relation to their starting values. Percentages can be used to model many real-world applications such as price changes and simple interest. 	 ESSENTIAL QUESTIONS How are percentages used to help solve real world application problems? What are the different ways percent problems are represented? 	
Acq	uisition	
Students will know - corresponding - commission - percent increase/percent decrease - markup/markdown - discount - tax - tip - simple interest - measurement error - percent error	 Students will be skilled at Defining percent and converting between fractions, decimals, and percentages. Solve percent problems mentally with benchmark percentages. Finding percent of a number when given percent and the whole. Finding the whole given a part and percent. Finding the percent given a part and the whole. Finding a new amount given the original and a percent increase or decrease. Finding the percent increase or decrease. Finding the percent of increase or decrease given 	

	r
inches from each edge; this	the original and new amounts.
estimate can be used as a	 Solving percent problems fluently, including
check on the exact	percent increase and decrease.
computation.	 Solving percent applications involving discourt
CCSS.MATH.CONTENT.7.RP.A.3	tax, and tip.
Use proportional relationships	- Solving percent applications involving simple
to solve multistep ratio and	interest, commissions, and other fees.
percent problems. Examples:	 Solving percent applications involving
simple interest, tax, markups	measurement and percent error.
and markdowns, gratuities and	
commissions, fees, percent	
increase and decrease, percent	
error.	
CCSS.MATH.CONTENT.7.NS.A.3	
Solve real-world and	
mathematical problems	
involving the four operations	
with rational numbers.	
Computations with rational	
numbers extend the rules for	
manipulating fractions to	
complex fractions	

Code	Evaluative Criteria	Assessment Evidence
T,M,A	Rubric Criteria:	PERFORMANCE TASK(S):
	Mathematical Concepts:	Title: Buying a Car
	4 - Explanation shows complete understanding of	Goal: This task challenges a student to use knowledge of simple interest and
	mathematical concepts to solve problems involving	percentages to compare different car buying scenarios.
	operations with rational numbers.	Role: Car financer
	3 - Explanation shows substantial understanding of	Audience: Teacher
	mathematical concepts to solve problems involving	Situation: The students are buying a new car. The students are to determine the
	operations with rational numbers.	better value for each car based on interest and total balance. They are then
	2 - Explanation shows some understanding of	deciding which bank would have the best interest rate (mark up) for your
	mathematical concepts to solve problems involving	purchase.
	operations with rational numbers.	Product or Performance: Detailed responses, showing all work.
	1 - Explanation shows very limited understanding of	Standards for Success: A scoring rubric is shared with students at the onset of
	mathematical concepts to solve problems involving	the project.
	operations with rational numbers OR is not written.	
	Strategy/Procedures:	
	4 - Uses an efficient and effective strategy to solve the	
	operations with rational numbers.	
	3 - Uses an effective strategy to solve the operations	
	with rational numbers.	
	2 - Sometimes uses an effective strategy to solve the	
	operations with rational numbers, but does not do it	
	consistently.	
	1 - Rarely uses an effective strategy to solve the	
	operations with rational numbers.	
	Mathematical Errors:	
	4 - 90-100% of the steps and solutions have no	
	mathematical errors.	
	3 - Almost all (85-89%) of the steps and solutions have	
	no mathematical errors.	
	2 - Most (75-84%) of the steps and solutions have no	
	mathematical errors.	
	1 - More than 75% of the steps and solutions have	
	mathematical errors.	
	Completion:	
	4 - All problems are completed.	

3 - 75% of all problems are completed. 2 - 50% of all problems are completed. 1 - 25% or less of problems are completed. Neatness and Organization: 4 - The work is presented in a neat, clear, organized fashion that is easy to read. 3 - The work is presented in a neat and organized fashion that is usually easy to read. 2 - The work is presented in an organized fashion but may be hard to read at times. 1 - The work appears sloppy and unorganized. It is hard to know what information goes together T,M,A M,A T,M,A	OTHER EVIDENCE: Embedded Assessment 1: Percent, decimal, and fractions Skill Check: Daily warm-ups Prompt: What role do percentage increases and decreases play in our everyday lives? Homework: Almost daily
--	--

Code	Pre-Assessment	
	- Equations CFA	
	- Rational Number Operations	
	 Ratios and Proportions Assessment 	
T,M,A	Summary of Key Learning Events and Instruction	Progress Monitoring
Т	• Opening Activity: The teacher will break students into groups of	- IXL
	four. The teacher will project the following statement at the front	- Homework
	of the room: "Kyle is at the mall with some of his friends shopping	- Exit Tickets
	for a new shirt to wear to the Mississippi State Fair tomorrow.	
	While in Abercrombie and Fitch he notices a \$50 shirt on the 35%	
	off rack. The problem is, the calculator on Kyle's phone does not	
	have a percent key. How can Kyle use his cell phone calculator to	
	determine the discounted sale price ?" In each group, one student	
	will be designated as the reader and another student as the	
	recorder. The "reader" from each group will re-read the problem	
	given to the class. Students will take turns commenting aloud on	
	the problem. The "recorder" will write the common reactions or	
	ideas that they agree upon as a group in the center of the Wheel.	
	One member from each group will come to the front of the room	
	and write their group's perspectives on a poster for the class to	
	review. After the class discussion, the teacher will explain to the	
	students that in this unit they will discover exactly how	
	percentages play a role in our everyday lives.	
T/M	• The teacher will present a lesson on converting between fractions,	
	decimals, and percents. Students will participate in a "crack the	
	code" activity where students are placed in groups and practice	
	with models, real-world situations all while trying to uncover the	
	meaning of a ransom note left to find their teacher. Students will	
	work through ten activities to where each reveals another clue.	
	Students will work collaboratively with assigned roles in order to	
	effectively and accurately solve the clues in a timed manner.	
A	 Assess students with a quiz. 	
A	• The teacher will present a lesson on the percent proportions.	
	Students will discover the rule for solving percent proportions	
	through the prompt: If percent means "out of 100", what percent	
	of students like math best if one in every 5 students say they	
	prefer math class? Students will work through this example and	

	other similar ones in groups of 4. The teacher will facilitate the
	learning by reminding them to think back to proportions and the
	different methods used to find the missing portions.
А	• The teacher will present a lesson on the percent equation. The
	teacher will display the problem $\frac{part}{whole} = percent$ on the board.
	The teacher will ask the whole class how we could rewrite this
	equation so that there is no longer a fraction in it. The teacher will
	remind students of when they cleared fractions in their equation
А	unit and what that entailed. Students will discover the percent
	equation format from the classroom discussion and will work
	together to use the equation with percent problems. The students
	will then work in pairs on independent practice where they do the
	model and the discuss their answers with their partner
	problem alone and then discuss their answers with their partner.
	• The teacher will present a lesson on percent increases and
	decreases. The students must make sense of the quantities in
	each problem, how they are related, what they mean in context,
	etc., and then determine what strategy or approach they will use
	to solve. The students will complete two rounds of a "Sprint"
	exercise included at the end of this lesson (Percent More or Less)
	that focuses on finding the part, the whole, and the percent more
	or percent less. Sprints are designed to develop fluency where the
	students are competing against time and themselves. One Sprint
	has two parts with closely-related problems on each. Students
	complete the two parts of the Sprint in guick succession with the
	goal of improving on the second part. even if only by one more.
	Between each part, students are given a question session to ask
	for clarification on any concepts they did not fully understand
Т	The teacher will present a lesson on discounts and markups
	Students will build on their prior knowledge of percent
	propertience and percent equations to discover how to find totals
	proportions and percent equations to discover now to find totals
	given a discount or a markup. Students will work in pairs playing
	the role of a store manager for a local department store and
	correct errors of two staff members. Students also apply the
	concept of calculating discount percentages using four
	advertisements found in the newspaper and neatly displaying
Ν.4	their calculations on construction paper.
М	• The teacher will present a lesson on simple interest. After learning
	the formula, the students will partake in station activities (5
	stations) where they must work collaboratively to figure out the

ESTABLISHED GOALS: CCSS.MATH.CONTENT.7.SP.A.1

 Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.

CCSS.MATH.CONTENT.7.SP.A.2

• Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samp of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word lend in a book by randomly sampling words from the bo predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.

CCSS.MATH.CONTENT.7.SP.C.5

 Understand that the probability of a chance event is a number Students will be able to independently use their learning to extend their understanding and application of statistics and probability.

	Meaning		
	UNDERSTANDINGS	ESSENTIAL QUESTIONS	
	 The probability of an event or combination of events occurring is determined by the number 	 How can you investigate chance processes, and develop, use, and evaluate probability models? 	
that	of desired or favorable outcomes divided by	 How are tables, lists, tree diagrams, or 	
t	the total number of outcomes possible. This value ranges from 0, where the event is	simulations used to find the probability of an event?	
	impossible, to 1, where the event is certain to occur, with various levels of likelihood in	 How is probability used to find the frequency of an event? 	
	between.	- How can sampling be used to draw inferences	
	- Experimental or theoretical probabilities can	about one or more populations?	
	be used to estimate or predict long-run frequencies.	 What are the different types of sampling and how and/or what would they represent? 	
	 Real-world situations can be simulated using various probability models in order to test hypotheses or make predictions based on 		
les)	data.		
ie	 Studying sample statistics is a way to reasonably understand and make predictions about larger population characteristics. 		
ngth	 Random samples tend to produce the most representative samples of populations. The 		
ook;	larger the sample size, the more accurate and		
ol	less variable the data tends to be.		
	 Sample data can be used to compare 		
2	characteristics of interest between two or		
	more populations. The mean and mean		
	absolute deviation can shed light on		
	differences between populations and how		
oility	meaningful these differences are compared to		
er			

between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.

CCSS.MATH.CONTENT.7.SP.C.6

 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.

CCSS.MATH.CONTENT.7.SP.C.7

 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.

CCSS.MATH.CONTENT.7.SP.C.8

• Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.

sampling variability.	
Acq	uisition
Students will know	Students will be skilled at
- distribution	 Understanding the probability of an event
 population characteristic 	happening is a number between 0 and 1, ranging
 statistical question 	from impossible to certain.
- population	 Defining probability and sample space. Estimate
 sample population 	probabilities from experimental data.
- sample statistic	 Determining the probability of events.
 sample proportion 	- Using probability to predict long-run frequencies.
 representative sample 	 Designing and conducting simulations to model
- random sample	real-world situations.
- measure of center	 Conducting simulations with multiple events to
 mean absolute deviation (MAD) 	determine probabilities.
 population proportion 	- Listing the sample space for compound events
- mean (average)	using organized lists, tables, or tree diagrams.
- range	- Determining the probability of compound events.
- interquartile range	- Designing and conducting simulations to model
- tree diagram	real-world situations for compound events.
- experimental probability	- Understanding and identifying populations and
- likelihood	sample populations for statistical questions.
- probability	- Describing sampling methods that result in
- sample space	representative samples.
- outcome	- Generating a random sample for a statistical
- theoretical probability	question.
- simulation	 Analyzing data sets using measures of center and interview with reasons
- simple event	Interquartile range.
- compound event	- Understanding and determining mean absolute
	deviation (MAD) as a measure of variability of a
	Determining the impact of cample size on
	- Determining the impact of sample size of
	Estimating population proportions using sample
	data
	- Comparing different nonulations using sample
	data
	- Identifying meaningful differences between
	populations using the mean and mean absolute

	deviation (MAD) of samples.

Code	Evaluative Criteria	Assessment Evidence
T, M, A	Rubric Criteria:	PERFORMANCE TASK(S):
	Mathematical Concepts:	Title: Design You Own Amusement Park
	4 - Explanation shows complete understanding of	Goal: This task challenges a student to use knowledge on probability of simple
	mathematical concepts to solve problems involving	events, theoretical vs. experimental probability, probability of compound events,
	operations with rational numbers.	and tree diagrams in order to complete tasks required for creating a real life
	3 - Explanation shows substantial understanding of	amusement park.
	mathematical concepts to solve problems involving	Role: Designer
	operations with rational numbers.	Audience: Teacher, classmates
	2 - Explanation shows some understanding of	Situation: The students want to design their own amusement park. The design
	mathematical concepts to solve problems involving	must include the essentials; name, top attractions, operation times, policies,
	operations with rational numbers.	roller coaster design, games, food, and the gift shop.
	1 - Explanation shows very limited understanding of	Product or Performance: Detailed responses, showing all work.
	mathematical concepts to solve problems involving	Standards for Success: A scoring rubric is shared with students at the onset of
	operations with rational numbers OR is not written.	the project.
	Strategy/Procedures:	
	4 - Uses an efficient and effective strategy to solve the	
	operations with rational numbers.	
	3 - Uses an effective strategy to solve the operations	
	with rational numbers.	
	2 - Sometimes uses an effective strategy to solve the	
	operations with rational numbers, but does not do it	
	consistently.	
	1 - Rarely uses an effective strategy to solve the	
	operations with rational numbers.	
	Mathematical Errors:	
	4 - 90-100% of the steps and solutions have no	
	mathematical errors.	
	3 - Almost all (85-89%) of the steps and solutions have	
	no mathematical errors.	
	2 - Most (75-84%) of the steps and solutions have no	
	mathematical errors.	
	1 - More than 75% of the steps and solutions have	
	mathematical errors.	
	Completion:	

	4 - All problems are completed.	
	3 - 75% of all problems are completed.	
	2 - 50% of all problems are completed.	
	1 - 25% or less of problems are completed.	
	Neatness and Organization:	
	4 - The work is presented in a neat, clear, organized	
	fashion that is easy to read.	
	3 - The work is presented in a neat and organized	
	fashion that is usually easy to read.	
	2 - The work is presented in an organized fashion but	
	may be hard to read at times.	
	1 - The work appears sloppy and unorganized. It is	
	hard to know what information goes together	
		OTHER EVIDENCE:
		Embedded Assessment 1: Identifying outcomes, Determining likelihood, Using
Т,М,А		relative frequencies, and Theoretical and Experimental Probability
		Common Unit Test: Samples, Population, Random samples to describe
T,M,A		populations, and Comparing populations including random samples.
		Skill Check: Daily warm-ups
		Prompt : What are the chances that someone has your birthday in the entire 7th
M,A		grade?
		Bromsti How are statistics used to micload?
M,A		
		Homework: Almost daily
T,M,A		

Code	Pre-Assessmer	nt
	- Equations CFA	
	 Rational Number Operations CFA 	
	 Probability and Statistics Pre-assessment 	
T, M, A	Summary of Key Learning Events and Instruction	Progress Monitoring
М	 Opening Activity: The teacher will have four students stand at the 	- IXL
	front of the classroom. The teacher will pose the question to all	- Homework
	students, "How many different ways can these students stand in a	- Exit Tickets
	line?" The teacher will record all the possible line ups on the	
	board. The teacher will then pose the question, "How many	
	chances are there that student #1 is at the front of the line?" The	
	teacher will then explain how these chances tie into the unit on	
	probability and statistics.	
A/M	 The teacher will present a lesson on identifying outcomes, 	
	determining likelihood, and using relative frequencies. Students	
	will play a game to collect data about what is inside bags and then	
	make a decision based on the information they have collected.	
	The process of using previous results from repeated trials to	
	inform the likelihood of future events is one way to estimate	
	probabilities that will be revisited later.	
A/M	 The teacher will present a lesson on experimental and theoretical 	
	probability. Students will explore the meaning of theoretical and	
	experimental probability by viewing interactive websites. A lab	
	activity will be performed using cooperative learning groups to	
	allow the students to determine experimental and theoretical	
	probability. The activity is done using 3 pennies where students	
	perform coin tosses to find the experimental probability and	
	determine the theoretical probability given the potential tosses	
	that could happen.	
А	 Assess students with a quiz. 	
А	 The teacher will present a lesson on sample space and the 	
	probability of compound events. The students will practice their	
	learning through a 1 on 1 game. Each pair gets a game board	
	(start space plus ten forward spaces) and game piece. Students	
	will roll one die. Based on the first roll students will guess "low"	
	or "high" low is a total of both dice (high is total greater than	

	seven, low is total less than seven). If they guess correctly, they	
	move forward one space. If not, they do not move. A total of	
	seven is "wild" and if it is rolled the student moves forward one	
	space regardless of guess. First to the finish wins. Play twice,	
	rotate opponents. Students will calculate the probability of each	
	compound event.	
A/T	• The teacher will present a lesson on simulations. This lesson	
	should ease students into simulation by defining the real	
	outcomes of an experiment and specifying a device to simulate	
	the outcome. Then, students are carefully led to define how an	
	outcome of the device represents the real outcome, define a trial	
	for the simulation, and identify what is meant by a trial resulting	
	in a success or failure. Students should see how a device that may	
	have many outcomes can be used to simulate a situation that has	
	only two outcomes, for example, how a number cube can be used	
	to represent a boy's birth (e.g., even outcome, prime number	
	outcome, or any three of its digits). Students will model this by	
	creating their own simulation for real world events. Students will	
	use various tools (spinners, coins, blocks, dice) to help them	
	design experiments and draw conclusions.	
Т	• Performance task: This task challenges a student to use	
	knowledge on probability of simple events, theoretical vs.	
	experimental probability, probability of compound events, and	
	tree diagrams in order to complete tasks required for creating a	
	real life amusement park.	
А	• The teacher will present a lesson on samples and population. In	
	this lesson students work through class discussions and activities	
	to identify populations and samples, as well as gain an	
	understanding of the importance of selecting reliable random	
	samples to gain information about a population. Students work in	
	pairs to gather information using a biased sample and random	
	sample to compare data and reflect on possible misconceptions	
	that a biased sample could produce.	
А	• The teacher will present a lesson on using random sampling to	
	describe the population. The lesson engages students in two	
	activities that investigate random samples and how random	
	samples vary. The first investigation (Sampling Pennies) looks at	
	the ages of pennies based on the dates in which they were made	
	or minted. Students select random samples of pennies and	

	examine the age distributions of several samples. Based on the data distributions, students think about what the age distribution of all of the pennies in the population might look like. In the second investigation, students examine the statistical question, "Do store owners price the groceries with cents that are closer to	
	a higher value or to a lower value?" Students select random samples of the prices from a population of grocery items and indicate how the samples might represent the population of all grocery items. In this lesson, students begin to see sampling variability and how it must be considered when using sample data to learn about a population	
A	 The teacher will present a lesson on comparing populations including random sampling. The students will look at different samples from the same population to see that their means are relatively close based on the MADs of the samples. This concept can be reversed to say that if two samples have means that are <i>not</i> very close, then the samples likely came from populations that are quite different. A general rule is given to determine whether two populations are meaningfully different based on the mean and MAD from a sample of each. 	
A A	 Review with students concepts for upcoming test Students take a test on samples, population, random samples to describe populations, and comparing populations including random samples. 	
A	 Conclude the unit with the return and discussion of the test, clarify any misunderstandings 	

ESTABLISHED GOALS: CCSS.MATH.CONTENT.7.G.A.2

Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

CCSS.MATH.CONTENT.7.G.A.3

Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.

CCSS.MATH.CONTENT.7.G.B.4

Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.

CCSS.MATH.CONTENT.7.G.B.5

Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure. CCSS.MATH.CONTENT.7.G.B.6

Solve real-world and

Students will be able to independently use their learning to extend their understanding and application of two and three dimensional figures.

apes		
us on	Mé	aning
n	UNDERSTANDINGS	ESSENTIAL QUESTIONS
or	 When two lines intersect, a pair of congruent vertical angles are created. This angle 	 How can you draw shapes that satisfy given conditions?
nique	relationship, along with complementary and supplementary angle relationships, can be used to determine missing angle measures in diagrams.	 How can you identify cross sections of three-dimensional figures? How can you use angle pairs to solve problems? How can you find the circumference of a circle?
onal	- A circle is a closed shape that is defined by the	- How do you find the area of a circle?
cing , as in	set of points that are the same distance from the center of the circle. The distance from the center to any point on the circle is called the	 How do you find the area of composite figures? How do you find the surface area of a figure made of prisms?
ght	radius, and the distance across the circle through the center is called the diameter. The measurement around a circle is called the	 How do you find the volume of a figure made up of cubes and prisms?
e area	circumference and is proportional to the	
cle	diameter of the circle with a constant of	
.1	proportionality equivalent to π . The area of a	
ll bin		
nip To	$A = \pi r$.	
	 In any triangle, the sum of any two side lengths must be longer than the measure of the third side. Given different conditions 	
ntary,	about the side and angle measures of a	
and	triangle, one unique triangle may be formed,	
-step	more than one triangle may be formed, or no	
e	triangle may be formed.	
•	Acq	uisition
	Students will know	Students will be skilled at

mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.

- supplementary angles
- surface area
- adjacent angles
- vertical angles
- radius

_

- diameter
- circumference
- complementary angles
- triangle inequality theorem
- cross-section
- volume

 Identifying and determining values of angles in complementary and supplementary relationships.

- Using vertical, complementary, and supplementary angle relationships to find missing angles.
- Using equations to solve for unknown angles.
- Defining a circle and identifying the measurements radius, diameter, and circumference.
- Determining the relationship between the circumference and diameter of a circle and using it to solve problems.
- Solving real-world and mathematical problems using the relationship between the circumference of a circle and its diameter.
- Determining the relationship between the area and radius of a circle and using it to solve problems.
- Solving real-world and mathematical problems using the relationship between the area of a circle and its radius.
- Solving problems involving area and circumference of two-dimensional figures.
- Drawing two-dimensional geometric shapes using rulers, protractors, and compasses.
- Determining if three side lengths will create a unique triangle or no triangle.
- Identify unique and identical triangles.
- Determining if conditions describe a unique triangle, no triangle, or more than one triangle.
- Identifying and describing two-dimensional figures that result from slicing three-dimensional figures.
- Finding the surface area of right prisms.
 Finding the surface area of right pyramids.
- Finding the volume of right prisms and pyramids.
- Solving real-world and mathematical problems involving volume.
- Distinguishing between and solving real-world

Code	Evaluative Criteria	Assessment Evidence
T, M, A	Rubric Criteria:	PERFORMANCE TASK(S):
	Mathematical Concepts:	Title: Yum Yum Cereal
	4 - Explanation shows complete understanding of	Goal: This task challenges students to solve some constructed response
	mathematical concepts to solve problems involving	questions involving areas of 2-dimensional figures. Additionally, students will
	operations with rational numbers.	solve for surface area and volume of 3-dimensional figures.
	3 - Explanation shows substantial understanding of	Role: Designer
	mathematical concepts to solve problems involving	Audience: Teacher, classmates
	operations with rational numbers.	Situation: The performance task requires students to design a cereal box that is
	2 - Explanation shows some understanding of	cost efficient and space saving.
	mathematical concepts to solve problems involving	Product or Performance: Detailed responses, showing all work.
	operations with rational numbers.	Standards for Success: A scoring rubric is shared with students at the onset of
	1 - Explanation shows very limited understanding of	the project.
	mathematical concepts to solve problems involving	
	operations with rational numbers OR is not written.	
	Strategy/Procedures:	
	4 - Uses an efficient and effective strategy to solve the	
	operations with rational numbers.	
	3 - Uses an effective strategy to solve the operations	
	with rational numbers.	
	2 - Sometimes uses an effective strategy to solve the	
	operations with rational numbers, but does not do it	
	consistently.	
	1 - Rarely uses an effective strategy to solve the	
	operations with rational numbers.	
	Mathematical Errors:	
	4 - 90-100% of the steps and solutions have no	
	mathematical errors.	
	3 - Almost all (85-89%) of the steps and solutions have	
	no mathematical errors.	
	2 - Most (75-84%) of the steps and solutions have no	
	mathematical errors.	
	1 - More than 75% of the steps and solutions have	
	mathematical errors.	
	Completion:	

4 - All problems are completed	
3 - 75% of all problems are completed.	
2 - 50% of all problems are completed.	
1 - 25% or less of problems are completed.	
Neatness and Organization:	
4 - The work is presented in a neat, clear, organized	
fashion that is easy to read.	
3 - The work is presented in a neat and organized	
fashion that is usually easy to read.	
2 - The work is presented in an organized fashion but	
may be hard to read at times.	
1 - The work appears sloppy and unorganized. It is	
hard to know what information goes together	
	OTHER EVIDENCE:
	Embedded Assessment 1: Area and circumference of circles, perimeter and
	area of composite figures.
	Embedded Assessment 2: Surface area
	Common Unit Test: area, circumference, perimeter, surface area, and volume.
	Skill Check: Daily warm-ups
	Prompt : How are volume and surface area used in the real world?
	Homework: Almost daily

Code	Pre-Assessme	nt
	- Equations CFA	
	 Rational Number Operations CFA 	
	- Pre-assessment	
T, M, A	Summary of Key Learning Events and Instruction	Progress Monitoring
Μ	 Opening Activity: Students will work with a partner on a 	- IXL
	"Geometric Shapes and Angles" introduction activity. The	- Homework
	students will be given a sheet with three polygon shapes on it	- Exit Tickets
	(one 6 sided, one 8 sided, and one 10 sided) and will be asked to	
	measure the following for each shape:	
	 The perimeter of the larger polygon to the nearest 	
	millimeter.	
	• The diameter of the circle to the nearest millimeter.	
	 The perimeter of the smaller polygon to the nearest 	
	millimeter.	
	 Calculate the value of ratio of the two perimeters to the 	
	diameter.	
	\circ Take the average of the ratios. This average is the	
	approximation of π .	
	The teacher will ask each group what their ratio averages	
	conclude about π . The teacher will explain how this activity will	
	incorporate into the next topics in the geometric shapes and	
	angles category.	
Μ	• The teacher will present a lesson on the area and circumference	
	of circles. The students will take part in a discovery lab activity	
	that will show what area and circumference are in a concrete	
	manner. The students will approximate the area through a	
	coloring activity that involves counting squares/partial squares.	
	They will also approximate circumference through wrapping a	
	string around a contained and measuring. They will make	
	connections to the opening activity and discover the formula used	
А	for area and circumference.	
	• The teacher will present a lesson on finding the perimeter and	
	area of composite figures. Students will discover how to	
	approximate perimeter and area given color tiles and grid paper.	
	The students will then take their approximations and the provided	

	formulas to determine accuracy.
А	 Assess students with a quiz.
А	• The teacher will present a lesson on constructing polygons. The
	students will use tools (protractor and compass) to model their
	learning through constructing polygons given angles and/or side
	lengths.
А	• The teacher will present a lesson on finding unknown angle
	measures. The students will use their knowledge about
	supplementary, complementary, vertical and adjacent angles to
	find the missing measurements. Students will work with partners
	to review their calculations and discuss plans on how to solve real
	world applications.
А	 The teacher will present a lesson on finding the surface area of
	right prisms. In sixth grade, students found the surface area by
	finding the area of individual shapes in the net. In this activity
	students explore more efficient ways to determine surface area.
	The students make the connection between the length of the long
	rectangle that wraps around the base and the perimeter of the
	trapezoid base. This enables students to find the surface area of
	the prism by finding the area of three shapes (rectangle and two
	hases) rather than each individual shape
А	• The teacher will present a lesson on finding the surface area of
	right pyramids. The students will use nets to determine the
	surface area of their given pyramids
А	 Assess students with a quiz.
Δ	 The teacher will present a lesson on finding the volume of right
~	nrisms and nyramids. The students will work in pairs through
	stations where they use their equation skills to manipulate the
	volume formula to find missing measurements
NA	The teacher will present a lesson on describing cross sections of
IVI	the teacher will present a ressolition describing cross sections of three-dimensional figures. The students will practice visualizing
	cross sections in a more abstract way by looking at images of a
	closs sections in a more abstract way by looking at images of a
	solid object that has been cut by a plane and matching those
	intages to the shapes created by the cuts (card sorting game). The
	cuts made in this activity vary from the previous activity in that
	the cuts are not all parallel to the base of the three-dimensional
	object. The card sorting game will be done in groups of three.
	Once each group is done, the groups will do a gallery walk around
	the room and discuss what they agree/disagree with. The cards

	have different things in common so different groups of students	
	might have different reasons for grouping certain images together.	
Μ	 Performance task: This task challenges students to solve some 	
	constructed response questions involving areas of 2-dimensional	
	figures. Additionally, students will solve for surface area and	
	volume of 3-dimensional figures.	
А	 Review with students concepts for upcoming test 	
А	 Students take a test on area, circumference, perimeter, surface 	
	area, and volume.	
А	 Conclude the unit with the return and discussion of the test, 	
	clarify any misunderstandings	