NEW MILFORD PUBLIC SCHOOLS

New Milford, Connecticut

Honors Statistics
April 2023

New Milford Board of Education

Pete Helmus, Chairperson
Wendy Faulenbach, Vice Chairperson
Leslie Sarich, Secretary
Tammy McInerney, Assistant Secretary
Eric Hansell
Sarah Herring
Brian McCauley
Tom O'Brien

Superintendent of Schools

Dr. Janet Parlato

Assistant Superintendent

Mrs. Holly Hollander

Authors of Course Guide

Nick Manciero
Deborah Murnan

New Milford's Mission Statement

The mission of the New Milford Public Schools, a collaborative partnership of students, educators, family and community, is to prepare each and every student to compete and excel in an ever-changing world, embrace challenges with vigor, respect and appreciate the worth of every human being, and contribute to society by providing effective instruction and dynamic curriculum, offering a wide range of valuable experiences, and inspiring students to pursue their dreams and aspirations.

Honors Statistics

Grades 11/12

This is a full year course designed for students who have passed honors Algebra 2. Topics include: probability, vocabulary, frequency tables and graphs, measures of central tendency, work with usual values and outliers, normal and binomial distributions, scatterplots and hypothesis testing, as well as word problems associated with these topics.

Work in the course will provide students with an excellent background in statistics as preparation for work in their college classes. At the honors level, this course is more rigorous by the inclusion of additional topics and more complex questions within each unit. The work here goes beyond the calculations to create a deeper understanding of the material through analysis of data and interpretations of the affect changes in the data have on the outcomes. The use of computers and graphing calculators is an integral part of this course and therefore a graphing calculator (such as TI-83+/TI84+ or comparable casio) is required for the class.

Vision of the graduate

Honors statistics lends itself to focusing a great deal on communication skills and critical thinking skills through thoughtful examination of the data and precise calculations followed by a summary of the analysis and subsequent conclusions drawn from the data. The types of data the students work with allows them to become more socially aware of different aspects of possible career fields such as business, gaming, medicine, politics and production/quality control.

Pacing Guide

UNIT \#	TITLE	Weeks
1	Sample distributions (vocabulary and graphs)	4-5 weeks
2	Numerical Descriptors	5-6 weeks
3	The Relationship between Two Variables(linear regression)	5-6 weeks
Midterm review and exam		1-2 weeks
4	Probability	4-5 weeks
5	Normal Distributions	2-3 weeks
6	Probability Distributions(binomial and geometric)	5-6 weeks
7	Inferential Statistics	5-6 weeks
Final review and exam		1-2 weeks

Final review and exam
1-2 weeks

Time frame: approx $4-5$ weeks

ESTABLISHED GOALS

CCSS.MATH.CONTENT.HSS.ID.

A. 1

Represent data with plots on the real number line (dot plots, histograms, and box plots).

CCSS.MATH.CONTENT.HSS.IC.

 B. 3Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

Transfer

Students will be able to independently use their learning to...

- Support ideas clearly and concisely using proper mathematical language/notation.
- Construct viable arguments involving mathematics and critique the reasoning of others.
- Work carefully to solve the problem and verify that calculations are accurate and solutions are reasonable.
- Make sense of problems and persevere in solving them

Meaning	
UNDERSTANDINGS	ESSENTIAL QUESTIONS
Students will understand that...	Students will keep considering...

- Data is collected for a purpose and has meaning in a context.
- Data can be gathered and classified through a variety of methods
- Data can be presented in both chart and graph form
- Random sampling allows results of surveys and experiments to be extended to the population from which the sample was taken
- Variability is natural and is also predictable and quantifiable
- Data gathered inappropriately can
- What are the keys to data classification and experimental design
- How can graphs be used to communicate information and/or misinformation
- What is required to plan and conduct a survey?
- What can cause results to be biased
- What are sampling techniques and how do they reduce bias?
- What are different methods by which data can be displayed?
- How do measures of dispersion describe data?
- What are the various methods of data
cause a bias in the conclusions
- Inherent bias diminishes as sample size increases.
- Graphical displays of data may be analyzed informally.
- Sampling can provide sufficient information so that population characteristics may be inferred.
- Interpretation is influenced by the way that data is collected, organized and displayed

collection?

- What are the differences between controlled experiments and observational studies?
- What considerations should be made when designing an experiment?
- How do graphs enhance the display of data?
- How does one know which graph is appropriate to use for a given set of data?

Acquisition

Students will know...

- Vocabulary related to types of data and sampling techniques.
- The key issues that can be problematic in data gathering and cause bias in interpretation
- How to obtain and generate data
- How to organize data into a frequency distribution, relative frequency distribution or a cumulative frequency distribution
- How to graph the data as a first step in analyzing data
- How to display the distribution of a quantitative variable with a stemplot, dot plot or pie chart
- How to make a line graph,bar graph, histogram, and pareto chart
- How to make a timeplot of data that

Students will be skilled at...

- Identifying types of data and recognizing sampling techniques
- Understanding issues that arise when gathering data that can cause data to be biased
- Identifying the methods for gathering data
- Identifying sampling techniques as they relate to 'real world' situations
- Identifying common sources of bias in surveys and experiments
- Summarizing the data in a frequency table
- Gathering data from a variety of sources and determining the appropriate graph
- Displaying the distribution with the appropriate line graph, bar graph, or pie chart
- Describing the distribution of a

	may vary over time - How to interpret numerical summaries and graphical displays of data	quantitative variable in terms of its shape, center and spread.		
- How to create, organize data and				
produce graphs using appropriate				
computer software?			\quad	using the software to create a graph.
:---				

Code	Evaluative Criteria	Assessment Evidence
T, M, A	Evaluative Criteria consists of: - An explanation of the methods used for gathering the data. - Data organized into an appropriate table - An accurate and appropriate graph of the data - A coherent summation of the data with an explanation of the reason for the differences in salaries across the U.S.	PERFORMANCE TASK(S): Students will show that they really understand evidence of... Goal: Produce an appropriate graph of data gathered Role: Career counselor Audience: High school seniors Situation: Gather data about salaries for a specific career from the Bureau of Labor Statistics Product or Performance: A comparison, in graphic form, of salaries for a specific career relative to a variety of locations within the United States. References will be made to possible reasons for the deferential in salaries from one region in the United States to another. Standards for Success: An appropriate graph representative of the data gathered and coherent summation of the reason for the differences in salaries across the United States.

	Evaluative criteria consists of:
M, A	- Is the correct sampling technique used to gather the data?
M, A	- Is the correct vocabulary and/or notations used to describe the data?
T, M, A	- Is the data accurately organized in a frequency table?
T, M, A	- Is the appropriate graph chosen for a specific application?
T, M, A	- Does the graph model the desired application?
T, M, A	- Does any bias exist within the data set?
T, M A	- Are justified conclusions made based on the data gathered?

OTHER EVIDENCE:

- Alternative assessment projects that involve gathering real world data, organizing the data and presenting it in graphic form.
- Review of standardized test questions to prep students for the challenge of the SAT and ACT exams
- Participation in class discussion, group work, and responses.
- Quizzes
- Unit Test - to include a variety of DOK level of problems and may include SAT style problems.
- Teacher checks for prerequisite and prior knowledge via warm-up and questioning activities, such as basic problems on percents and reading graphs
- Teacher will provide review and assessment on prerequisite Sampling distribution vocabulary knowledge to ensure all students are capable of communicating effectively
Summary of Key Learning Events and Instruction
Student success at transfer meaning and acquisition depends on...

M, A

M, A
T, M, A
M, A
M, A
M, A
M, A

T, M, A
T, M, A
M, A
M, A
M, A

- Students complete an introductory activity that will provide reference during lessons on vocabulary and frequency tables
- Teacher will introduce statistical vocabulary and provide sampling models to which they apply
- Teacher discusses sampling techniques which may cause data to be biased
- Teacher and students will collectively practice using sampling techniques
- Students practice problems related to data gathering to determine their level of understanding
- Kahoot quizzes used to review and master the vocabulary
- Teacher demonstrates how to organize data into frequency tables and identify the various frequency tables used
- Teacher and students will collectively practice organizing data into frequency tables
- Students summarize real data in frequency tables
- Teacher will introduce and provide practice on creating line and time-series graphs
- Teacher will introduce and provide practice on creating bar graphs, histograms and pareto charts
- Teacher will introduce and provide practice on creating other graphs: dotplot, stemplot, pie chart

Progress Monitoring

- Monitoring class work through board work, group work, questioning, and walk-arounds
- Check for understanding via going over homework and mediums such as reflections and exit tickets
- Class worksheets with direct teacher observation or self assessment
- Practice on whiteboard/chalkboard with direct teacher observation
- Kahoot quiz or pear deck slideshow with review questions and direct teacher observation
- Reflective journals or exit tickets at the end of the lesson
- Edulastic or google form review assignments
- Homework assignments with direct teacher observation or self assessment

T, M, A	- Teacher will provide information as to when it is appropriate to use each type of graph
T, M, A	- Teacher will discuss scales on the graph and how graphs can be made to be misleading
T, M, A	- Teacher and students will collectively practice a variety of graphs using statistical data
T, M, A	- Students analyze a series of data sets to determine which graph is appropriate for each given data set and then create graphs by hand
T, M, A	- Students create specific graphs for given data using appropriate technology (i.e. Microsoft Excel and Google Sheets)
T, M, A	- Students and teacher will collectively look at data sets and their corresponding graphs to analyze and draw conclusions.
T, M, A	- Students will explore sampling distributions using the unit's performance task and complete an activity based review in preparation for a unit assessment.
	Suggested Resources and supplies Resources:
	All Resources and materials must adhere to all New Milford Board of Education policies and regulations and are subject to New Milford Board of Education approval. Resources and materials must be researched and vetted by the writers and department heads prior to submission for approval.

- Textbook: Triola, Mario F. Elementary Statistics. $13^{\text {th }}$ ed. Boston Ma. : Pearson, Prentice Hall, 2018. Print.
- Resource materials provided by Pearson such as implementation and applications of statistics, differentiation and standardized test practice
- Resource from the Bureau of Labor Statistics
- Kahoot; interactive game: Wiggins and Murphy

	• Desmos; advanced graphing calculator • Google forms and Google slides with pear deck extension - Microsoft excel and google sheets - Supplies: White boards, straight edge, graph paper, colored pencils	

ESTABLISHED GOALS

CCSS.MATH.CONTENT.HSS.ID.

 A. 4Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.

CCSS.MATH.CONTENT.HSS.IC.

 1Understand statistics as a process for making inferences about population parameters based on a random sample from that population.

CCSS.MATH.CONTENT.HSS.IC.

4

Use data from a sample survey to estimate a population mean or

Transfer

Students will be able to independently use their learning to...

- Analyze real data using measures of center
- Model measures of center using graphical representations
- Construct viable conclusions involving mathematical reasoning to describe a data set

Meaning	
UNDERSTANDINGS Students will understand that... - Measures of central tendency describe how the data cluster or group. - Measures of dispersion describe how the data spread (disperse) around the center of the data. - Data is collected for a purpose and has meaning within a context. - Data of the descriptive statistical information generated by a univariate data set should include the interplay	ESSENTIAL QUESTIONS Students will keep considering... - Why is data collected and analyzed? - How do people use data to influence others? - How can technology be used as a time saving measure in calculating measure of center? - How can predictions be made based on data? - What is an outlier and how does it influence a data set?

proportion; develop a margin of error through the use of simulation models for random sampling.

CCSS.MATH.CONTENT.HSS.IC.

 $\underline{3}$Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

CCSS.MATH.CONTENT.HSS.IC.

 $\underline{5}$Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.

CCSS.MATH.CONTENT.HSS.ID.

 A. 2Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

CCSS.MATH.CONTENT.HSS.ID. A. 3

Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data
between central tendency and dispersion as well as among specific measures.

- Median and IQR resist the effects of outliers, while the mean and standard deviation do not.
- Skewed Distributions are analyzed with the mean pulled in the direction of the skewness (toward the longer tail) relative to the mean.
- Mean and standard deviation can be used to determine if an observation is 'usual'
- Z-Score can be used to determine if an observation is 'usual'
- 5 Number Summary can be used to create a boxplot for the data
- What does it mean for the data to be skewed?
- Do all dispersions contain an outlier?
- How are measures of central tendency used?
- What is meant by the spread of the data?
- When is an observation considered 'usual'
- What does it mean for an observation to be considered 'usual'?
- How do z-scores determine if an observation is 'usual'

Students will know...	Students will be skilled at...

- The basic properties of the median and the mean
- That an outlier can cause data to be skewed relative to the position of the mean and median on the normal curve
- That the standard deviation summarizes how spread out all the data are around the mean.
- What z-scores means
- How to compare values of two different variables using their z-scores
- How to determine if an observation is 'usual'
- What it means to be 'usual'
- How to calculate a range of usual values using the rule of thumb,
- Calculating the mean, median, mode, midrange and standard deviation for a set of data
- Selecting and using appropriate statistical methods to analyze data
- Calculating weighted means for frequency distributions and to find grades such as for GPA
- Using the 1.5 IQR rule to identify possible outliers and identify outliers in boxplots
- Calculating the z-score of an observation and determining whether a value is 'usual'
- Calculating ranges of usual values using the rule of thumb, empirical rule and Chebyshev's theorem
- Determining whether or not an

points (outliers).	empirical rule and Chebyshev's theorem - How to find the value at a specific percentile - How to find the percentage of observations falling below any value in a normal model using appropriate technology - How to use appropriate technology to find the 5 number summary and create a box plot for the data	observation is 'usual' - Creating the 5 -number summary of a variable - Constructing a box plot by hand from a 5-number summary - Calculating which value lies at a specific percentile - Calculating the percentile for a specific value

STAGE 2

Code	Evaluative Criteria	Assessment Evidence
T, M, A	Evaluative Criteria consists of - An explanation of the methods used for gathering the data. - Data organized into an appropriate table - Measures of center are accurate and appropriately represented visually - A coherent summation of the data with an explanation of the current housing prices in the area	PERFORMANCE TASK(S): Students will show that they really understand evidence of... Goal: gather data, produce an appropriate graph and make appropriate calculations for the data. Role: Realtor Audience: Home buyers Situation: gather data about housing prices in a specific area and calculate measures of center for the data. Product or Performance: Present the results of the survey to prospective home buyers to give them an understanding of the housing prices in that area. Standards for Success: Accurate calculations and a knowledgeable presentation of the data gathered.

		OTHER EVIDENCE:
T, M, A	- Is the correct sampling technique used to gather the data?	- Alternative assessment projects such as posters, computer generated graphs and real world applications
M, A	- Is the correct vocabulary and/or notation used to describe the data	- Review of standardized test questions to prep students for the challenge of the SAT and ACT exams
M, A	- Are the measures of center calculations (mean, median, mode, weighted mean, and standard deviation) accurate?	- Participation in class discussion, group work, and responses. - Quizzes
T, M, A	- Is the data modeled appropriately	
T, M, A	- Was the appropriate technology utilized?	- Unit Test - to include a variety of DOK level of problems and may include SAT style problems.
T, M, A	- Are justified conclusions made based on the data gathered?	

- Teacher checks for prerequisite and prior knowledge via warm-up and questioning activities, such as basic problems on interpreting data and data models.
- Teacher will provide review and assessment on prerequisite Sampling distribution vocabulary knowledge to ensure all students are capable of communicating effectively

Summary of Key Learning Events and Instruction
Student success at transfer meaning and acquisition depends on...

- Teacher will review measures of center
- Teacher will discuss the concept of skewed versus normal data
- Teacher and students will collectively practice calculating measures of center and analyze shape
- Students should calculate the measures of center for a variety of data sets
- Students analyze data and determine which measure of center is appropriate based on the presence of an outlier
- Teacher will introduce the weighted mean formulas and provide applications of them
- Teacher will introduce the concept of standard deviation and demonstrate how to calculate it using the sample standard deviation formula

Progress Monitoring

- Monitoring class work through board work, group work, questioning, and walk-arounds
- Check for understanding via going over homework and mediums such as reflections and exit tickets
- Class worksheets with direct teacher observation or self assessment
- Practice on whiteboard/chalkboard with direct teacher observation
- Kahoot quiz or pear deck slideshow with review questions and direct teacher observation
- Reflective journals or exit tickets at the end of the lesson
- Edulastic or google form review assignments
- Homework assignments with direct teacher observation or self assessment

T, M, A	- Teacher will demonstrate how to enter a data list in the graphing calculator and how to retrieve the mean and standard deviation calculations
T, M, A	- Teacher and students will collectively practice calculating weighted means, standard deviations and spread
T, M, A	- Students should calculate the mean, weighted mean and sample standard deviation on a variety of data sets and then rework them using technology in order to see the benefits of using technology with respect to time spent doing calculations and how it relates to productivity
M, A	- Teacher will provide examples of the mean and standard deviation formulas involving frequency distributions and then demonstrate how the calculations can be completed using the graphing calculator
M, A	- Teacher and students will collectively practice calculations involving frequency distributions
T, M	- Students will use calculations of mean and standard deviation to determine how the concept of normal applies to the data set. Specifically the empirical rule, range rule of thumb and Chebyshev's theorem
T, M	- Students will use the mean and standard deviations of normal and skewed data to determine the ranges of 'usual values'
A	- Teacher will explain the concept of percentiles and how to calculate them, focusing specifically on the 1st and 3rd quartiles.

- Teacher and students will collectively practice calculating percentiles
- Students should be able to calculate the percentile of a value and find the value at a specific percentile
- Teacher will introduce the concept of outliers and use the 1.5 IQR formula to determine the existence of outliers in a data set.
- Teacher explains how to create a boxplot and how it is affected by the existence of outliers in the data set
- Teacher will demonstrate how to set up a boxplot using formulas to calculate the 5 number summary and how to find the same information using the graphing calculator
- Teacher and students will collectively practice finding the five number summary and creating an appropriate boxplot
- Students should use calculations of the 5 number summary, through both formulas and graphing calculator to create boxplots
- Students interpret boxplots for information relative to quartiles for the data set.
- Students will explore measures of center using the unit's performance task and complete an activity based review in preparation for a unit assessment.

Suggested Resources and supplies

Resources:
All Resources and materials must adhere to all New Milford Board of Education policies and regulations and are subject to New Milford Board of Education approval. Resources and materials must be researched and vetted by the writers and department heads prior to submission for approval.

- Textbook: Triola, Mario F. Elementary Statistics. $13^{\text {th }}$ ed. Boston Ma. : Pearson, Prentice Hall, 2018. Print.
- Resource materials provided by Pearson such as implementation and applications of statistics, differentiation and standardized test practice
- Resource from the Bureau of Labor Statistics
- Kahoot; interactive game: Wiggins and Murphy
- Desmos; advanced graphing calculator
- Google forms and Google slides with pear deck extension
- Microsoft excel and google sheets
- Supplies: White boards, straight edge, graph paper, colored pencils, graphing calculator

Subject/Course: Honors Statistics Grade:11/12
Time frame: approx 5-6 weeks

CCSS.MATH.CONTENT.HSS.ID.

 B. 6Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

CCSS.MATH.CONTENT.HSS.ID.

 B.6.AFit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.

CCSS.MATH.CONTENT.HSS.ID.

B.6.B

Informally assess the fit of a function by plotting and analyzing residuals.

CCSS.MATH.CONTENT.HSS.ID.

 B.6.CFit a linear function for a scatter plot that suggests a linear

Unit: 3 The Relationship between Two Variables(linear regression)

- How to identify the roles of variables and to place the response variable on the y-axis and the explanatory variable on the x-axis using proper context.
- The conditions for correlation and how to check them.
- Correlations are between -1 and +1 (inclusive), and each extreme indicates a perfect linear association.
- How the magnitude of the correlation reflects the strength of the linear association.
- The correlation has no units.
- The correlation coefficient is not changed by changing the center or scale of either variable.
- Causation cannot be demonstrated by a scatterplot or correlation.
- How a linear equation summarizes the relationship between two variables.
- That the least squares slope is easily affected by extreme values.
- Residuals are the differences between data values and the corresponding predicted values.
- Residuals have a relation to the least squares linear equation?

Students will be skilled at...

- Making a scatter plot by hand (for a small set of data) and with technology.
- Computing the correlation of two variables.
- Reading a correlation table produced by a statistics program.
- Describing the direction, form, and strength of a scatter plot.
- Using a correlation as part of the description of the scatterplot.
- Being aware of misinterpretations of correlation.
- Using a plot of the residuals against predicted values as a check for the appropriateness of the generated line of regression.
- Finding a regression equation from the summary statistics for each variable and the correlation between the variables.
- Finding a regression equation using a statistics software output table.
- Using regression to predict a value of y for a given x .
- Computing the residual for each data value and displaying them.
- Writing a sentence in context showing the meaning of the slope and y-intercept.
- Describing a prediction made from a regression equation, relating the predicted value to the specified x-values

Code	Evaluative Criteria	Assessment Evidence
T, M, A M, A T, M,A T, M, A	Evaluative Criteria consists of - An explanation of the two variables being examined - Accurate calculations used to determine if a correlation exists - Clear and thoughtful summation of the results of the calculations - Final determination as to whether or not a correlation exists	PERFORMANCE TASK(S): Students will show that they really understand evidence of... ** continuation of performance task from unit 2 Goal: Have students research data for two related variables to determine if there is an existing correlation (one variable is from performance task in unit 2) Role: Statistician Audience: Manager in a field related to the chosen topic Situation: Have students choose 2 variables to research and determine if there is a correlation(i.e.: temperature and ice cream sales, height and foot size, etc..) Students should examine the scatter and residual plots, determine the correlation coefficient and the line of regression. Then they should draw a conclusion as to the nature of the correlation; strength, direction and form and the usefulness of the line of regression as a predictive model for the data. Product or Performance: Presentation on the data gathered and the corresponding conclusion Standards for Success: Accurate calculations and detailed clear explanations of the variables and determination of the existence of a correlation between the two variables

	Evaluative criteria consists of:	OTHER EVIDENCE:
A M, A	- Is appropriate data collected? - Are the correct calculations performed and are the solutions accurate?	- Alternative assessment projects such as a examining correlations for sets of real data, defining the values calculated in the context of the real data, and looking at the residuals for real data.
T, M, A	- Are the correct conclusions drawn about the existence of a correlation between the two variables?	- Review of standardized test questions to prep students for the challenge of the SAT and ACT exams
T, M, A	- Is there a clear understanding of the values calculated in the context of the data?	- Participation in class discussion, group work, and responses. - Quizzes
T, M, A	- Do the residuals tell us anything about the data?	- Unit Test - to include a variety of DOK level of problems and may include SAT style problems.

Stage 3 - Learning Plan

Code

- Teacher checks for prerequisite and prior knowledge via warm-up and questioning activities, such as basic problems on graphing equations in slope intercept form and calculating slope, substitution and evaluation, solving equations
- Teacher will provide review and assessment on prerequisite correlations vocabulary knowledge to ensure all students are capable of communicating effectively

Summary of Key Learning Events and Instruction
Student success at transfer meaning and acquisition depends on...

- Teacher will emphasize the importance of the first rule of data analysis: make a picture.

M, A
T, M, A

- Teacher will continue to emphasize the importance of vocabulary and notation.
- Teacher will introduce formulas and show examples for calculating regression equations by hand. The teacher will then at some point show students how to use technology to get the identical equations in order for students to make connections with what technology can do and be confident they are getting accurate results.
- Each of these topics can be taught individually or by having students work in small groups verifying results.
- Teacher supplies visual scatterplots and asks students to describe form, direction, strength, and approximate a correlation coefficient. Students should describe scatter plots verbally indicating direction, form, and strength.
- Teacher and students will collectively practice finding lines of regressions
- Students plot unusual values and then determine if they understand if and why they are unusual.

Progress Monitoring

- Monitoring class work through board work, group work, questioning, and walk-arounds
- Check for understanding via going over homework and mediums such as reflections and exit tickets
- Class worksheets with direct teacher observation or self assessment
- Practice on whiteboard/chalkboard with direct teacher observation
- Kahoot quiz or pear deck slideshow with review questions and direct teacher observation
- Reflective journals or exit tickets at the end of the lesson
- Edulastic or google form review assignments
- Homework assignments with direct teacher observation or self assessment

T, M, A

- Teacher will instruct students on residuals by using a scatter plot and having students record the residual for each point and explain the meaning of the residuals in the context of the problem.
- Teacher will instruct students on the use of the graphing calculator to access a plot of the residuals and how to use it to determine if the regression equation is a good model for the population
- Teacher and students will collectively practice finding residuals for a regression line
- Students practice in small groups working problems by hand and verifying results. They should then do the same exercise using technology in order to see the benefits of using technology with respect to time spent doing calculations and how it relates to productivity and accuracy.
- Students present their work to the class in order for students to observe more instances of good models and models that are not representative of the true nature of the data
- Students work in small groups to find their own bivariate data. For instance each group could gather measurements of height as related to the golden ratio, write their own regression equations, and compare them with the other groups. They could then learn that the larger their sample sizes, the more closely their equations will resemble each other. They can gain a better understanding of the slope and intercept in the context of the problem. (a brief tangent can be taken into an understanding of the significance of the golden ratio)
- Students will be given 4 or 5 ordered pairs to plot, write an equation, and find the correlation coefficient. They would then be instructed to change one of the points and see how the values could have dramatically changed. Using a few points gives students a more visual experience.
- Projects/performance tasks modeling real world problems involving all aspects of transformations and symmetry
- Summative assessments

Quizzes
Unit test

- Teacher should explain there are three steps that should be followed when answering these types of questions. Think (the students should state the question and make a plan), Show (the students should show their calculations), and Tell (interpret your results in the context of the problem)
T, M
- Students will explore lines of regression and residual values using the unit's performance task and complete an activity based review in preparation for a unit assessment.

Suggested Resources and supplies

Resources:

All Resources and materials must adhere to all New Milford Board of Education policies and regulations and are subject to New Milford Board of Education approval. Resources and materials must be researched and vetted by the writers and department heads prior to submission for approval.

- Textbook: Triola, Mario F. Elementary Statistics. $13^{\text {th }}$ ed. Boston Ma. : Pearson, Prentice Hall, 2018. Print.
- Resource materials provided by Pearson such as implementation and applications of statistics, differentiation and standardized test practice
- Resource from the Bureau of Labor Statistics
- Kahoot; interactive game: Wiggins and Murphy
- Desmos; advanced graphing calculator
- Google forms and Google slides with pear deck extension
- Microsoft excel and google sheets
- Supplies: White boards, straight edge, graph paper, colored pencils, graphing calculator
\square

Subject/Course: Honors Statistics Grade:11/12
Time frame: approx 4-5 weeks

ESTABLISHED GOALS

CCSS.MATH.CONTENT.HSS.C

 P2Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.

CCSS.MATH.CONTENT.HSS.C

P.A. 3

Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.

CCSS.MATH.CONTENT.HSS.C P.A4

Transfer

Students will be able to independently use their learning to...

- Work carefully to solve problems by looking for and using rules and patterns
- Verify that calculations are accurate and solutions are reasonable
- Use a simulation to determine the likelihood of an event occurring
- Analyze real data by using and/or creating probability models

Students will understand that...

- Probability describes the likelihood an event will occur.
- Outcomes which do not occur in event A are considered the compliment to event A.
- Mutually exclusive events are events that cannot occur simultaneously are mutually exclusive events.

Meaning

ESSENTIAL QUESTIONS
Students will keep considering...

- How is probability used in everyday life?
- How are events defined and what are examples of each?
- How does the study of probability integrate itself into the study of statistics?
- How do you conduct a probability experiment?

Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.

CCSS.MATH.CONTENT.HSS.C

 P.A. 5Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer

CCSS.MATH.CONTENT.HSS.C P.B. 6

Find the conditional probability of A given B as the fraction of B's

- Events A and B are independent if the occurrence of one does not affect the probability of the occurrence of the other. If A and B are not independent, then they are said to be dependent.
- Probability is a number between 0 and 1 inclusively
- Combinations and permutations can be used in the calculation of a statistical probability
- What is conditional probability?
- What is meant by independent/dependent outcomes?
- How do you determine if 2 events are mutually exclusive?
- Can the fundamental counting principle and rules for combinations and permutations help us calculate statistical probabilities

Acquisition

Students will know...

- The basic definition and rules of probability
- The difference between odds and probability
- How and when to apply the Addition Rule

Students will be skilled at...

- Calculating simple probabilities, including complements of events
- Calculating the odds in favor and against an event
- Calculating conditional probabilities
- Differentiating between independent and

	Evaluative criteria consists of:	OTHER EVIDENCE:
T, M, A	- Is the appropriate method and/or formula used?	- Alternative assessment projects such as posters, computer generated graphs and real world applications(i.e. gaming, business and sporting events)
T, M , A	- Is the correct vocabulary used when explaining possible outcomes.	- Review of standardized test questions to prep students for the challenge of the SAT and ACT exams
M, A	- Are the correct calculations performed and are the solutions accurate?	- Participation in class discussion, group work, and responses.
T, M, A	- Are the correct conclusions drawn from the probabilities?	- Quizzes
T, M, A	- Is there a clear understanding of the values calculated in the context of the data?	- Unit Test - to include a variety of DOK level of problems and may include SAT style problems.

- Teacher checks for prerequisite and prior knowledge via warm-up and questioning activities, such as basic problems on solving equations, order of operations and substitution
- Teacher will provide review and assessment on prerequisite Sampling distribution vocabulary knowledge to ensure all students are capable of communicating effectively

Summary of Key Learning Events and Instruction
Student success at transfer meaning and acquisition depends on...

- Teacher will introduce vocabulary and notation for basic probability
- Teacher and students will collectively practice using the vocabulary and basic probability
- Students will complete practice problems to demonstrate their level of understanding of vocabulary and notation
- Teacher will instruct students on the topic of odds and the difference between odds and probability
- Teacher and students will collectively practice odds and probability
- Students will complete activity cards designed to review basic concepts and odds using manipulatives and real data
- Teacher will instruct students on the use of the addition and multiplication rules of probability and vocabulary associated with these topics
- Teacher and students will collectively practice problems comparing the addition and multiplication rules

Progress Monitoring

- Monitoring class work through board work, group work, questioning, and walk-arounds
- Check for understanding via going over homework and mediums such as reflections and exit tickets
- Class worksheets with direct teacher observation or self assessment
- Practice on whiteboard/chalkboard with direct teacher observation
- Kahoot quiz or pear deck slideshow with review questions and direct teacher observation
- Reflective journals or exit tickets at the end of the lesson
- Edulastic or google form review assignments
- Homework assignments with direct teacher observation or self assessment

T, M, A	- Students will complete practice problems to demonstrate their level of understanding of the addition and multiplication rule. Practice will include work with 2-way frequency tables and problems similar to those seen on standardized tests
T, M	- Students will analyze information in a series of problems to determine whether the addition or multiplication rule is appropriate in finding the solution
M, A	- Teacher will instruct students on the counting principle, combinations and permutations and their use in the calculation of probabilities.
M, A	- Teacher and students will collectively practice/compare the difference between combinations and permutations
T, M , A	- Students will analyze problems in order to distinguish when combinations or permutations are appropriate in solving applications and then use them to calculate probabilities
T, M	- Students will explore probability using the unit's performance task and complete an activity based review in preparation for a unit assessment. (i.e. carnival games, sporting data and manipulatives)

Suggested Resources and supplies

Resources:
All Resources and materials must adhere to all New Milford Board of Education policies and regulations and are subject to New Milford Board of Education approval. Resources and materials must be researched and vetted by the writers and department heads prior to submission for approval.

- Textbook: Triola, Mario F. Elementary Statistics. $13^{\text {th }}$ ed. Boston Ma. : Pearson, Prentice Hall, 2018. Print.
- Resource materials provided by Pearson such as implementation and applications of statistics, differentiation and standardized test practice
- Resource from the Bureau of Labor Statistics
- Kahoot; interactive game: Wiggins and Murphy
- Desmos; advanced graphing calculator
- Google forms and Google slides with pear deck extension
- Microsoft excel and google sheets
- Supplies: White boards, straight edge, graph paper, colored pencils, graphing calculator, manipulatives(i.e.: dice, spinners, coins cards)

Subject/Course: Honors Statistics Grade:11/12
the normal curve.

CCSS.MATH.CONTENT.HSS.ID. A. 4
 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under

Students will be able to independently use their learning to...

- Support ideas clearly and concisely using proper mathematical language/notation.
- Construct viable arguments involving mathematics and critique the reasoning of others.
- Work carefully to solve the problem and verify that calculations are accurate and solutions are reasonable.
- Make sense of problems and persevere in solving them

Meaning	
UNDERSTANDINGS Students will understand that... - Mean and standard deviation define the family of curves used in normal distributions. - Areas under the curve represent probabilities associated with continuous distributions. - Area under the curve is always to the left of the corresponding z-score - Total area under the normal curve is 1. - Outcomes of many real life events can	ESSENTIAL QUESTIONS Students will keep considering... - What is a normal curve? - What are the properties of a normal probability distribution? - How can one recognize a normal (bell shaped) distribution? - How is the probability of an event calculated using the z-score formula? - How does the standard deviation and mean affect the graph of the normal distribution?

be approximated by the normal curve

- Probability for groups can be found by applying the Central Limit Theorem
- Why is an understanding of the normal curve essential to statistics?
- In what situations can the normal curve be applied to data?
- When Is it appropriate to use the Central Limit Theorem?
- How can one recognize a normal (bell shaped) distribution?

Acquisition

Students will know...

- The total area under a normal curve is 1
- Part of the area under a normal curve represents the probability for a specific observation
- The z-score formula can be used to find the probability for a specific observation
- The probability associated with a z-score always represents the area to the left on the curve
- Normal probabilities have a variety of real world applications
- How to determine when the Central Limit Theorem is appropriate for solving an application problem

Students will be skilled at...

- Using the z-score formula to find a normal probability for a specific observation
- Using the z-score formula to find a value for a specific percentile or probability
- Applying knowledge of normal probabilities to real world situations
- Using the graphing calculator to solve problems involving normal probabilities
- Using the Central Limit Theorem calculating probabilities for specific applications

STAGE 2

Code	Evaluative Criteria	Assessment Evidence
T, M, A	Evaluative Criteria consists of: - Accurate use of mathematical concepts - Identification of the appropriate formula for the application - Accurate calculations using either the z-score and chart method or the normal functions on the graphing calculator - Complete explanation of final results	PERFORMANCE TASK(S): Goal: gather information about a mode of transportation that requires specific safety requirements as they pertain to weight loads(i.e. elevators, ski gondolas, water taxis) and to provide the statistical basis for the limitations to be imposed Role: Construction Supervisor Audience: Contractors Situation: gather data about safety specifications for construction as how statistics is used to determine the limits for weight loads in Product or Performance: Present a clear explanation as to the need for specific safety requirements to be put in place and how the requirements are determined through statistical models

		Standards for Success: Accurate calculations and a knowledgeable presentation of the data gathered
T, M, A T, M, A M, A T, M, A	Evaluative criteria consists of: - Is the correct information identified to be used to solve the problem? - Is the correct method chosen to solve the problem? - Is the solution the result of accurate substitution and calculation - Are the answers to a real world problem reasonable and clearly communicated?	OTHER EVIDENCE: - Alternative assessment projects including a variety of applications involving normal probabilities - Review of standardized test questions to prep students for the challenge of the SAT and ACT exams - Participation in class discussion, group work, and responses. - Quizzes - Unit Test - to include a variety of DOK level of problems and may include SAT style problems.

- Teacher checks for prerequisite and prior knowledge via warm-up and questioning activities, such as basic problems on solving equations,order of operations and substitution and work with the z-score formula
- Teacher will provide review and assessment on prerequisite probability vocabulary knowledge to ensure all students are capable of communicating effectively

Summary of Key Learning Events and Instruction
Student success at transfer meaning and acquisition depends on...

- Teacher will introduce the z-score charts and how to use them to find probabilities
- Teacher will demonstrate how to use the z-score chart to find values for specific probabilities
- Teacher and students will collectively practice using the z score chart to find probabilities
- Students will practice finding z-scores and probabilities using the z-score chart and complete applications problems
- Teacher will provide training on how to complete the application problems using the appropriate functions on the graphing calculator
- Teacher and students will collectively practice applications using both methods
- Students will complete a variety of application problems using the formulas and charts and then rework them using technology in order to see the benefits of using technology with respect to time spent doing calculations and how it relates to productivity
- Students will analyze data related to application problems to determine the appropriate method for finding a solution
- Teacher will introduce the Central Limit Theorem and provide examples of real applications(i.e. weight limits, manufacturing specifications)

Progress Monitoring

- Monitoring class work through board work, group work, questioning, and walk-arounds
- Check for understanding via going over homework and mediums such as reflections and exit tickets
- Class worksheets with direct teacher observation or self assessment
- Practice on whiteboard/chalkboard with direct teacher observation
- Kahoot quiz or pear deck slideshow with review questions and direct teacher observation
- Reflective journals or exit tickets at the end of the lesson
- Edulastic or google form review assignments
- Homework assignments with direct teacher observation or self assessment
- Projects/performance tasks modeling real

M,A

- Teacher and students will collectively practice using the central limit theorem in calculating probabilities
- Students will research uses for the Central Limit Theorem, complete appropriate calculations and provide interpretations of the results
- Students will explore Normal Distributions using the unit's performance task and complete an activity based review in preparation for a unit assessment.

Suggested Resources and supplies

Resources:

All Resources and materials must adhere to all New Milford Board of Education policies and regulations and are subject to New Milford Board of Education approval. Resources and materials must be researched and vetted by the writers and department heads prior to submission for approval.

- Textbook: Triola, Mario F. Elementary Statistics. 13 ${ }^{\text {th }}$ ed. Boston Ma. : Pearson, Prentice Hall, 2018. Print.
- Resource materials provided by Pearson such as implementation and applications of statistics, differentiation and standardized test practice
- Resource from the Bureau of Labor Statistics
- Kahoot; interactive game: Wiggins and Murphy
- Desmos; advanced graphing calculator
- Google forms and Google slides with pear deck extension
- Microsoft excel and google sheets
world problems involving all aspects of area, surface area and volume
- Summative assessments

Quizzes
Unit test

- Supplies: White boards, straight edge, graph paper, colored pencils, graphing calculator, z-score tables

Subject/Course: Honors Statistics
Unit: 6 Probability distributions (geometric and binomial)
Grade:11/12
Time frame: approx 5-6 weeks

ESTABLISHED GOALS

CCSS.MATH.CONTENT.HSS.M D.A. 1

Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.

CCSS.MATH.CONTENT.HSS.M

D.A. 2

Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.

CCSS.MATH.CONTENT.HSS.M

D.A. 3

Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the

Transfer

Students will be able to independently use their learning to...

- Support ideas clearly and concisely using proper mathematical language/notation.
- Construct viable arguments involving mathematics and critique the reasoning of others.
- Work carefully to solve the problem and verify that calculations are accurate and solutions are reasonable.
- Make sense of problems and persevere in solving them

Meaning	
UNDERSTANDINGS	ESSENTIAL QUESTIONS
Students will understand that...	Students will keep considering...

- How are the mean and standard deviation calculated for a binomial variable?
- What are the differences between binomial and geometric probabilities.
- What is the relationship between variances and standard deviation?
- How are binomial and geometric probabilities determined?
- How can these distributions be applied to real-world applications?
theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.
CCSS.MATH.CONTENT.HSS.M D.A. 4

Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value.For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?
experiments for which there are only two possible outcomes.

- Expected values are used to simulate real world probabilities.
- Unusual values can be identified.
- How can expected values be used to predict real world probabilities

Acquisition
 Students will know...

- Random variables have values that are determined by chance.
- Probability distributions consist of all values of a random variable, along with their respective probabilities.
- Probability distributions must satisfy two requirements: the sum of the probabilities equals 1 and each probability is between and including 0 and 1.
- Probability histogram construction techniques.
- Binomial distributions have two categories of outcomes and a fixed number of independent trials with a constant probability.
- Geometric distributions only deal with the probability of when the first success occurs.
- Probability distributions have a mean and standard deviation.
- Usual outcomes can be distinguished from those considered to be unusual.
- Mean, variance, and standard deviation of a random variable can be calculated
- Notation for population parameters.

Students will be skilled at...

- Recognizing the difference between discrete and continuous random variables.
- Calculating probabilities for random variables and displaying them in a probability distribution table.
- Calculating means and standard deviations for all three types of probability distributions using appropriate formulas.
- Calculating expected values, variance, and standard deviation of a random variable.
- Determining whether a probability distribution is binomial or geometric
- Using a binomial probability formula to calculate an exact, at least, or more than a certain number of successes.
- Discerning between a permutation and a combination.
- Using a geometric probability formula to determine the probability of the first success on a particular trial.
- Using formulas to determine if outcomes are unusual.
- Reporting any probabilities or other such values including the parameters in the context of the problem using complete

	Mean and standard deviation must be recalculated after adding a constant or multiplying by a constant.	
	- Expected value and standard deviation of a random variable must be given meaning in the proper context.	

	Evaluative criteria consists of:	OTHER EVIDENCE:
T, M, A	- Is the correct information identified to be used to solve the problem?	- Alternative assessment projects including a variety of applications involving geometric and binomial probabilities
T, M, A	- Is the correct method chosen to solve the problem?	- Review of standardized test questions to prep students for the challenge of the SAT and ACT exams
M, A	- Is the solution the result of accurate substitution and calculation	- Participation in class discussion, group work, and responses.
T, M, A	- Are the answers to a real world problem reasonable and clearly communicated?	- Quizzes
		- Unit Test - to include a variety of DOK level of problems and may include SAT style problems.

Pre-Assessment

- Teacher checks for prerequisite and prior knowledge via warm-up and questioning activities, such as basic problems on solving equations, order of operations and substitution
- Teacher will provide review and assessment on prerequisite probability vocabulary knowledge to ensure all students are capable of communicating effectively

Summary of Key Learning Events and Instruction

Student success at transfer meaning and acquisition depends on...

- Teacher will introduce the z-score charts and how to use them to find probabilities
- Teacher will demonstrate how to use the z-score chart to find values for specific probabilities
- Teacher and students will collectively practice using the z score chart to find probabilities
- Students will practice finding z-scores and probabilities using the z-score chart and complete applications problems
- Teacher will provide training on how to complete the application problems using the appropriate functions on the graphing calculator
- Teacher and students will collectively practice applications using both methods
- Students will complete a variety of application problems using the formulas and charts and then rework them using technology in order to see the benefits of using technology with respect to time spent doing calculations and how it relates to productivity
- Students will analyze data related to application problems to determine the appropriate method for finding a solution
- Teacher will introduce the Central Limit Theorem and provide examples of real applications(i.e. weight limits, manufacturing specifications)
- Teacher and students will collectively practice using the central limit theorem in calculating probabilities

Progress Monitoring

- Monitoring class work through board work, group work, questioning, and walk-arounds
- Check for understanding via going over homework and mediums such as reflections and exit tickets
- Class worksheets with direct teacher observation or self assessment
- Practice on whiteboard/chalkboard with direct teacher observation
- Kahoot quiz or pear deck slideshow with review questions and direct teacher observation
- Reflective journals or exit tickets at the end of the lesson
- Edulastic or google form review assignments
- Homework assignments with direct teacher observation or self assessment
- Projects/performance tasks modeling real world problems involving all aspects of area,
- Students will research uses for the Central Limit

Theorem and complete appropriate calculations

- Students will explore Normal Distributions using the unit's performance task and complete an activity based review in preparation for a unit assessment.
- Summative assessments

Quizzes

Unit test

Suggested Resources and supplies

Resources:

All Resources and materials must adhere to all New Milford Board of Education policies and regulations and are subject to New Milford Board of Education approval. Resources and materials must be researched and vetted by the writers and department heads prior to submission for approval.

- Textbook: Triola, Mario F. Elementary Statistics. $13^{\text {th }}$ ed. Boston Ma. : Pearson, Prentice Hall, 2018. Print.
- Resource materials provided by Pearson such as implementation and applications of statistics, differentiation and standardized test practice
- Resource from the Bureau of Labor Statistics
- Kahoot; interactive game: Wiggins and Murphy
- Desmos; advanced graphing calculator
- Google forms and Google slides with pear deck extension
- Microsoft excel and google sheets
- Supplies: White boards, straight edge, graph paper, colored pencils, graphing calculator, binomial tables, manipulatives (i.e.: basketball and 'hoop', centimeter cubes, candy)

Time frame: approx 5-6 weeks

	Transfer	
CCSS.MATH.CONTENT.HSS.IC. A1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population.	Students will be able to independently use their lea - Support ideas clearly and concis - Construct viable arguments invol others. - Work carefully to solve the problem solutions are reasonable. - Make sense of problems and per	ning to... y using proper mathematical language/notation. ing mathematics and critique the reasoning of m and verify that calculations are accurate and evere in solving them
CCSS.MATH.CONTENT.HSS.IC. A2		aning
Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?	UNDERSTANDINGS Students will understand that... - Estimation of the value of a parameter based on a statistic is a primary goal of sampling - Confidence intervals use the sample statistic to construct an interval of values that one can be reasonably	ESSENTIAL QUESTIONS Students will keep considering... - Why are confidence intervals and tests of significance important? - How is sampling used and why is it important? - How do you use inferential models to draw statistically significant conclusions

CCSS.MATH.CONTENT.HSS.IC. B3
Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

CCSS.MATH.CONTENT.HSS.IC.

 B4Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.

CCSS.MATH.CONTENT.HSS.IC.

 B5Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.
CCSS.MATH.CONTENT.HSS.IC. B. 6

Evaluate reports based on data.
certain contains the true (unknown) parameter.

- Confidence intervals and tests of significance are complementary procedures.
- Paired comparisons experimental design allows control for possible effects of extraneous variables.
- Z- tests can be used in specific situations.
- Correlations exist between sets of data.
- Mean can be used to find a confidence interval when the standard deviation is known.
- Hypothesis tests determine the difference between the alternative hypothesis and null hypothesis
- Null hypothesis can be rejected in certain situations
from data and make inferences about populations?
- How can the language of statistics be used to communicate mathematical ideas coherently and precisely?
- How can technology be applied to create and interpret models?
- How can improperly applied inference procedures lead to bad conclusions?
- How do I construct a confidence interval?
- What type of information does a confidence interval provide me?
- How can hypothesis testing provide the statistical structure to reject or fail to reject the null hypothesis?
- When does a person choose to use the z-test type of hypothesis testing?

Acquisition

Students will know... \quad Students will be skilled at...

- That the margin of error of a confidence interval for a proportion changes with the sample size and the level of confidence.
- How to examine their data for violations of conditions that would make inferences about a population proportion unwise or invalid.
- Constructing a one-proportion z-interval.
- Interpreting a one-proportion z-interval in a simple sentence or two within the context of the problem.
- Stating the null and alternative hypotheses for a one-proportion z-test.
- Performing a one-proportion z-test.
- Writing a sentence interpreting the results

STAGE 2

Code	Evaluative Criteria	Assessment Evidence

T, M, A	Evaluative Criteria consists of: - Accurate use of mathematical concepts - Identification of the appropriate formula to solve the problem - Precise calculations - Complete explanation of final results	PERFORMANCE TASK(S): Students will show that they really understand evidence of... Goal: Perform a hypothesis test checking the published proportion of blue M\&Ms or red Skittles. Role: Marketing Department for Mars Co. Audience: CEO for Mars Co. Situation: Have the marketing department calculate the percentage of blue M\&Ms in their bag. Perform a hypothesis test comparing it to the publicly published percentages disclosed by the company. Decide whether they will reject or fail to reject the null hypothesis. Product or Performance: Board presentation. Standards for Success: Accurate calculations and detailed clear explanations of the testing and the conclusions

		OTHER EVIDENCE:
T, M, A	Evaluative criteria consists of: - Are key pieces of information identified properly to be used in solving the problem?	- Alternative assessment projects such interpreting confidence intervals , identifying real world applications of confidence intervals and looking at real world problems involving the rejection of the null hypothesis
M, A	- Is the correct calculation used to solve the problem?	- Review of standardized test questions to prep students for the challenge of the SAT and ACT exams
M, A	- Is the solution the result of accurate substitution and calculation	- Participation in class discussion, group work, and responses.
T,M,A	- Is the interpretation of the solution clearly explained?	- Quizzes
T, M,A	- Are the answers to a real world problem clearly communicated?	- Unit Test - to include a variety of DOK level of problems and may include SAT style problems.

Pre-Assessment

- Teacher checks for prerequisite and prior knowledge via warm-up and questioning activities, such as basic problems on solving equations, order of operations and substitution and work with the z-score formula
- Teacher will provide review and assessment on prerequisite inferential statistics vocabulary knowledge to ensure all students are capable of communicating effectively

Summary of Key Learning Events and Instruction Student success at transfer meaning and acquisition depends on...

M, A

T, M, A

M, A
M, A

M, A

T, M, A

T, M, A

- Teacher will continue to emphasize the importance of vocabulary and notation, specifically related to confidence intervals and margins of error
- Teacher will introduce formulas and show examples for creating confidence intervals by hand. The teacher will then at some point show students how to use technology to get the identical results in order for students to make connections with what technology can do and be confident they are getting accurate results.
- Each of these topics can be taught individually or by having students work in small groups verifying results.
- Teacher may want to supply organized formula/symbol sheets for students as there are extensive formulas and symbols used in this unit. A z-table needs to be provided.
- Teacher and students will collectively practice calculating confidence intervals and margin of error
- Students research daily or weekly to find statistics available online or as a hard copy relating to the topics in this unit. They may want to share them individually to the class.
- Students individually or in small groups create confidence intervals using published percentiles for M\&M colors and their own sample bag. They can

Progress Monitoring

- Monitoring class work through board work, group work, questioning, and walk-arounds
- Check for understanding via going over homework and mediums such as reflections and exit tickets
- Class worksheets with direct teacher observation or self assessment
- Practice on whiteboard/chalkboard with direct teacher observation
- Kahoot quiz or pear deck slideshow with review questions and direct teacher observation
- Reflective journals or exit tickets at the end of the lesson
- Edulastic or google form review assignments
- Homework assignments with direct teacher observation or self assessment
- Projects/performance tasks modeling real world problems involving all aspects of area, surface area and volume
check whether the confidence interval they created captured the true proportion. Hopefully not all of them will if our sample size is large enough.
T, M, A
- Teacher will introduce hypothesis testing and how to identify the hypothesis, alternative and the null hypothesis for a given claim
T, M, A

T, M, A

M, A
M, A

M, A
T, M

T, M

- Teacher will instruct students on the calculation of the test statistic and its use in determining whether or not to reject the null hypothesis
- Teacher will provide students with practice on hypothesis testing and review how to determine whether the data indicates a one or two tailed test
- Teacher and students will collectively practice setting up a hypothesis test and determining its relevance
- Students will analyze data to determine whether it indicates a one tailed or two tailed test is appropriate in testing a hypothesis
- Students will work in small groups working formulas by hand and verify results with each other.
- Students will describe confidence intervals and results of their hypothesis test verbally as well as writing complete sentences in context.
- Students will explore confidence intervals and hypothesis testing using the unit's performance task and complete an activity based review in preparation for a unit assessment.
- Summative assessments

Quizzes
Unit test

Suggested Resources and supplies

Resources:

All Resources and materials must adhere to all New Milford Board of Education policies and regulations and are subject to New Milford Board of Education approval. Resources and materials must be researched and vetted by the writers and department heads prior to submission for approval.

	- Textbook: Triola, Mario F. Elementary Statistics. $13^{\text {th }}$ ed. Boston Ma. : Pearson, Prentice Hall, 2018. Print. - Resource materials provided by Pearson such as implementation and applications of statistics, differentiation and standardized test practice - Resource from the Bureau of Labor Statistics - Kahoot; interactive game: Wiggins and Murphy - Desmos; advanced graphing calculator - Google forms and Google slides with pear deck extension - Microsoft excel and google sheets - Supplies: White boards, straight edge, graph paper, colored pencils, graphing calculator, z-table/t-table	

