

TERM 1	
Term 1 Dates	MS College and Career Readiness Standards
WK 1:	CHE.1.1 Use dimensional analysis (factor/label) and significant figures to convert units and solve
Aug 6-16	problems
WK 2:	CHE.1.2 Design and conduct experiments using appropriate measurements, significant figures,
Aug 19-23	graphical analysis to analyze data.
	CHE.1.3 Enrichment: Research information from multiple appropriate sources and assess the
	credibility, accuracy, possible blas, and conclusions of each publication.
Unit Assessment 1 <u>Mathematical and Computational Analysis</u>	
WK 3:	CHE.2.1 Investigate the historical progression leading to the modern atomic theory, including, but
Aug 26-30	not limited to, work done by Dalton, Rutherford's gold foil experiment, Thomson's cathode ray
	experiment, Millikan's oil drop experiment, and Bonr's interpretation of bright line spectra.
WK 4:	CHE.2.2 Construct models (e.g., ball and stick, online simulations, mathematical computations) of
Sept 2-6	atomic nuclei to explain the abundance weighted average (relative mass) of elements and isotopes
	on the published mass of elements.
	Mid-term OR Unit Assessment 2 (WK 4.5/ WK 5) <u>CHE.2 Atomic Theory</u>
WK 5:	CHE.2.3 Investigate absorption and emission spectra to interpret explanations of electrons at
Sept 9-13	discrete energy levels using tools such as online simulations, spectrometers, prisms, flame tests,
	and discharge tubes. Explore both laboratory experiments and real-world examples
WK 6:	CHE.2.4 Research appropriate sources to evaluate the way absorption and emission spectra are
Sept 16-20	used to study astronomy and the formation of the universe.
	Unit Assessment 3 <u>CHE.2 Atomic Theory</u>
WK 7:	CHE.3.1 Explore and communicate the organization of the periodic table, including history, groups,
Sept 23-27	families, family names, metals, nonmetals, metalloids, and transition metals.
WK 8:	CHE.3.2 Analyze properties of atoms and ions (e.g., metal/nonmetal/metalloid behavior,
Sept 30- Oct 4	electrical/heat conductivity, electronegativity and electron affinity, ionization energy, and
	atomic/ionic radii) using periodic trends of elements based on the periodic table.
	CHE.3.3 Analyze the periodic table to identify quantum numbers (e.g., valence shell electrons,
	energy level, orbitals, sublevels, and oxidation numbers).
	Unit Assessment 4 optional due to BMA <u>CHE.3 Periodic Table</u>
WK 9:	Benchmark or Unit Assessment
Oct 7-11	

TERM 1	
Recurring Standards	
Standards taught the first 4-5 weeks; the mid-term data will indicate remediation is needed.	
WK 5:	CHE.1.1, CHE.1.2 & CHE.1.3
Sept 9-13	
WK 6:	CHE.2.1
Sept 16-20	
WK 7:	CHE.2.2
Sept 23-27	

TERM 2	
Term 2 Dates	MS College and Career Readiness Standards
WK 1: Oct 14-18	CHE.4.1 Develop and use models (e.g., Lewis dot, 3-D ball-stick, 3-D printing, or simulation programs such as PhET) to predict the type of bonding between atoms and the shape of simple compounds.
	CHE.4.2 Use models such as Lewis structures and ball and stick models to depict the valence electrons and their role in the formation of ionic and covalent bonds.
	CHE.4.3 Predict the ionic or covalent nature of different atoms based on electronegativity trends and (or position on the periodic table
	CHE.4.4 Use models and oxidation numbers to predict the type of bond, shape of the compound, and the polarity of the compound.
WK 2:	CHE.4.5 Use models of simple hydrocarbons to exemplify structural isomerism.
Oct 21-25	CHE.4.6 Use mathematical and computational analysis to determine the empirical formula and the percent composition of compounds.
	CHE.4.7 Use scientific investigation to determine the percentage of composition for a substance
	(e.g., sugar in gum, water and/or unpopped kernels in popcorn, percent water in a hydrate).
	Compare results to justify conclusions based on experimental evidence.
	CHE.4.8 Plan and conduct controlled scientific investigations to produce mathematical evidence of
	the empirical composition of a compound.
	Unit Assessment 1 <u>Bonding</u>
WK 3:	CHE.5.1 Use the periodic table and a list of common polyatomic ions as a model to derive
Oct 28- Nov 1	chemical compound formulas from compound names and compound names from chemical
	formulas.
	CHE.5.2 Generate formulas of ionic and covalent compounds from compound names. Discuss
	compounds in everyday life and compile lists and uses of these chemicals.
WK 4:	CHE.5.3 Generate names of ionic and covalent compounds from their formulas. Name binary.
Nov 4-8	
	Mid-term OR Unit Assessment 2 (WK 4.5/ WK 5) <u>Naming Compounds</u>
WK 5:	CHE.12.1 Enrichment: Construct explanations to explain the bonding characteristics of carbon that
Nov 11-15	result in the formation of basic organic molecules.
WK 6:	CHE.12.2 Enrichment: Obtain information to communicate the system used for naming the basic
Nov 18-22	linear hydrocarbons and isomers that contain single bonds, simple hydrocarbons with double and
	triple bonds, and simple molecules that contain a benzene ring.
	Unit Assessment 3 <u>Organic Nomenclature</u>
WK 7:	CHE.12.3 Enrichment: Develop and use models to identify the functional groups that form the
Dec 2-6	basis of alcohols, ketones, ethers, amines, esters, aldehydes, and organic acids.
WK 8:	Review
Dec 9-13	
WK 9:	Benchmark OR Unit Assessment
Dec 16-20	

TERM 2	
Recurring Standards	
Standards taught the first 4-5 weeks; the mid-term data will indicate remediation is needed.	
WK 5:	CHE.4.1, CHE 4.2, CHE.4.3 & CHE.4.4
Nov 11-15	
WK 6:	CHE.4.5, CHE.4.6, CHE.4.7 & CHE.4.8
Nov 18-22	
WK 7:	CHE.5.1 & CHE.5.2
Dec 2-6	

TERM 3	
Term 3 Dates	MS College and Career Readiness Standards
WK 1: Jan 6-10	 CHE.6.1 Develop and use models to predict the products of chemical reactions (e.g., synthesis reactions; single replacement; double displacement; and decomposition, including exceptions such as decomposition of hydroxides, chlorates, carbonates, and acids). Discuss and/or compile lists of reactions used in everyday life. CHE.6.2 Plan, conduct, and communicate the results of investigations to demonstrate different types of simple chemical reactions. CHE.6.3 Use mathematics and computational analysis to represent the ratio of reactants and products in terms of masses molecules, and moles (stoichiometry)
WK 2: Jan 13-17	 CHE.6.4 Use mathematics and computational analysis to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. Give real-world examples (e.g., burning wood). CHE.6.5 Plan and conduct a controlled scientific investigation to produce mathematical evidence that mass is conserved. Use percent error to analyze the accuracy of results. CHE.6.6 Use mathematics and computational analysis to support the concept of percent yield and limiting reagent. CHE.6.7 Plan and conduct a controlled scientific investigation to produce mathematical evidence to predict and confirm the limiting reagent and percent yield in the reaction. Analyze quantitative data, draw conclusions, and communicate findings. Compare and analyze class data for validity.
	Unit Assessment 1 <u>Chemical Reactions</u>
WK 3: Jan 20-24	 CHE.10.1 Enrichment: Construct explanations to explain how temperature and heat flow in terms of the motion of molecules (or atoms). CHE.10.2 Enrichment: Classify chemical reactions and phase changes as exothermic or endothermic based on enthalpy values. Use a graphical representation to illustrate the energy changes involved
WK 4: Jan 27-31	 CHE.10.3 Enrichment: Analyze and interpret data from energy diagrams and investigations to support claims that the amount of energy released or absorbed during a chemical reaction depends on changes in total bond energy. CHE.10.4 Enrichment: Use mathematical and computational thinking to solve problems involving heat flow and temperature changes, using known values of specific heat and latent heat of phase change.
Mid-term OR Unit Assessment 2 (WK 4.5/ WK 5)	
Thermochemistry (Enrichment)	
WK 5: Feb 3-7	CHE.9.1 Enrichment: Analyze and interpret data to describe the properties of acids, bases, and salts.

WK 6:	CHE.9.2 Enrichment: Analyze and interpret data to identify differences between strong	
Feb 10-14	and weak acids and bases (i.e., dissociation).	
	Unit Assessment 3	
WK 7:	CHE.9.3 Enrichment: Plan and conduct investigations using the pH scale to classify acid	
Feb 17-21	and base solutions.	
	CHE.9.4 Enrichment: Analyze and evaluate the Arrhenius, Bronsted-Lowry, and Lewis	
	acid-base definitions.	
WK 8:	CHE.9.5 Enrichment: Use mathematical and computational thinking to calculate pH from	
Feb 24-28	the hydrogen-ion concentration.	
	CHE.9.6 Enrichment: Obtain, evaluate, and communicate information about how buffers	
	stabilize pH in acid-base reactions.	
	Unit Assessment 4 <u>Acids and Bases (Enrichment)</u>	
optional due to BMA		
WK 9:	BMA OR Unit Assessment	
March 3-7		

TERM 3	
Recurring Standards	
Standards taught the first 4-5 weeks; the mid-term data will indicate remediation is needed.	
WK 5:	CHE.6.1, CHE.6.2 & CHE.6.3
Feb 3-7	
WK 6:	CHE.6.4, CHE.6.5, CHE.6.6 & CHE.6.7
Feb 10-14	
WK 7:	CHE.10.1 & CHE.10.2
Feb 17-21	

TERM 4	
Term 4 Dates	MS College and Career Readiness Standards
WK 1:	CHE.7.1 Analyze the behavior of ideal and real gases in terms of pressure, volume,
March 17-21	temperature, and number of particles.
	CHE.7.2 Enrichment: Use an engineering design process to develop models (e.g., online
	simulations or student interactive activities) to explain and predict the behavior of each
	state of matter using the movement of particles and intermolecular forces to explain the
14/// 2	behavior of matter.*
WK 2:	CHE.7.3 Analyze and interpret heating curve graphs to explain the energy relationship
March 24-28	between states of matter (e.g., thermochemistry-water heating from -200 C to 1200 C).
	cne.7.4 Use mathematical computations to describe the relationships comparing
	law Dalton's law combined gas laws and ideal gas laws
	CHE , 7.5 Enrichment: Use an engineering design process and online simulations or lab
	investigations to design and model the results of controlled scientific investigations to
	produce mathematical evidence that confirms the gas-laws relationships.*
	Unit Assessment 1
WK 3:	CHE.7.6 Use the ideal gas law to support the prediction of volume, mass, and number of
March 31-	particles produced in chemical reactions (i.e., gas stoichiometry).
April 4	CHE.7.7 Plan and conduct controlled scientific investigations to produce mathematical
	evidence that confirms that reactions involving gases conform to the law of conservation
	of mass.
	CHE.7.8 Enrichment: Using gas stoichiometry, calculate the volume of carbon dioxide
	needed to inflate a balloon to occupy a specific volume. Use an engineering design
	process to design, construct, evaluate, and improve a simulated air bag.*
WK 4:	CHE.8.1 Use mathematical and computational analysis to quantitatively express the
April 7-11	concentration of solutions using the concepts such as molarity, percent by mass, and
	CHE 8 2 Develop and use models (e.g., opling simulations, games, or video
	CHE.O.2 Develop and use models (e.g., online simulations, games, or video
	CHE 8.3 Analyze and interpret data to predict the effect of temperature and pressure on
	solids and gases dissolved in water.
Mid-term OR Unit Assessment 2 (WK 4.5/ WK 5)	
WK 5:	CHE.8.4 Design, conduct, and communicate the results of experiments to test the
April 14-18	conductivity of common ionic and covalent compounds in solution.

	CHE.8.5 Use mathematical and computational analysis to analyze molarity, molality, dilution, and percentage dilution problems.
	CHE.8.6 Design, conduct, and communicate the results of experiments to produce a
	specified volume of a solution of a specific molarity, and dilute a solution of a known
	molarity
WK 6:	CHE.8.7 Use mathematical and computational analysis to predict the results of reactions
April 21-25	using the concentration of solutions (i.e., solution stoichiometry).
	CHE.8.8 Enrichment: Investigate parts per million and/or parts per billion as it applies to
	environmental concerns in your geographic region, and reference laws that govern these
	factors.
Unit Assessment 3	
WK 7:	CHE.11.1 Enrichment: Construct explanations to explain how to use Le Chatelier's
April 28- May 2	principle to predict the effect of changes in concentration, temperature, and pressure.
	CHE.11.2 Enrichment: Predict when equilibrium is established in a chemical reaction.
	CHE.11.3 Enrichment: Use mathematical and computational thinking to calculate an
	equilibrium constant expression for a reaction.
Unit Assessment 4 optional due to BMA	
WK 8:	Review for benchmark
May 5-9	
WK 9:	BMA OR EOC Assessment
May 12-21	

TERM 4	
Recurring Standards	
Standards taught the first 4-5 weeks; the mid-term data will indicate remediation is needed.	
WK 5:	CHE.7.1 & CHE.7.2
April 14-18	
WK 6:	CHE.7.3, CHE.7.4 & CHE.7.5
April 21-25	
WK 7:	CHE.7.6, CHE.7.7 & CHE.7.8
April 28- May 2	