Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	4th	1	10 days

Unit Title: Erosion

OVERVIEW OF UNIT:

In this unit of study, students develop understandings of the effects of weathering and the rate of erosion by water, ice, wind, or vegetation. The crosscutting concepts of patterns and cause and effect are called out as organizing concepts. Students demonstrate grade-appropriate proficiency in planning and carrying out investigations and constructing explanations. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Big Ideas

- Cause-and-effect relationships are routinely identified, tested, and used to explain change.
- Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around.
- Rainfall helps to shape the land and affects the types of living things found in a region.
- Living things affect the physical characteristics of their regions
- Science assumes consistent patterns in natural systems.
- Patterns can be used as evidence to support an explanation.
- Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes.
- The presence and location of certain fossil types indicate the order in which rock layers were formed.

Essential Questions

- What do the shapes of landforms and rock formations tell us about the past?
- How can evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation be observed or measured?
- What can rock formations tell us about the past?

Objectives

- Students will be able to explain what the shapes of landforms and rock formations tell us about the past.
- Students will be able to identify how to observe and measure the evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

Assessment

Formative Assessment:

Benchmark:

Labs

• Unit Assessments

• Claim-Evidence- Reasoning

• Class Discussions

Summative Assessment:

- Multiple Choice Assessment
- Open Ended Response
- Claim-Evidence- Reasoning

Alternative:

- Performance Assessments
- Projects
- Models
- Modified Tests Independently Developed by Teacher

Key Vocabulary

Weathering, Erosion, Fossil, Deposition, Water Cycle, Seasonal Cycle, Gravity, Sediment, Formation,

Resources & Materials

- STEMscopes
- Glaciers, Water, and Wind, Oh My!
- Bill Nye Video-Erosion
- Gary's Sand Journal
- Explaining Glaciers, Accurately

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

• Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build schema, watch videos, complete labs, take assessments and collect data.

Standard	Standard Description
8.1.5.DA.1	Collect, organize, and display data in order to highlight relationships or support a claim.
8.1.5.DA.5	Propose cause-and-effect relationships, predict outcomes, or communicate ideas using data.

Interdisciplinary Integration

Activities:

- Students will read informational text for knowledge and understanding.
- Students will synthesize and present new learning in oral, written and/or visual projects and/or presentations.

2

Resources:

- Teacher Vision Cross-Curricular Theme Map https://www.teachervision.com/teaching-methods/curriculum-planning/7167.html
- Engineering Go For It! http://egfi-k12.org/
- US Department of Education STEM http://www.ed.gov/stem
- Intel STEM Resource http://www.intel.com/content/www/us/en/education/k12/stem.html
- NASA STEM http://www.nasa.gov/audience/foreducators/expeditions/stem/#.VYrO2flViko
- PBS STEM http://www.pbs.org/teachers/stem/#content
- STEM Works http://stem-works.com/activities
- What Every Educator Should Know About Using Google by Shell Education
- Promoting Literacy in all Subjects by Glencoe http://www.glencoe.com/sec/teachingtoday/subject/promoting_literacy.phtml

• International Literacy Association Read Write Think - http://www.readwritethink.org/

Standard	Standard Description
NJSLS-ELA	Read with sufficient accuracy and fluency to support comprehension.
L.RF.4.4	
NJSLS-ELA	Write informative/explanatory texts to examine a topic and convey ideas and
W.IW.4.2	information clearly.
NJSLS-ELA	Conduct short research projects that use multiple reference sources (print and
W.WR.4.5	non-print) and build knowledge through investigation of different aspects of a topic.
NJSLS-ELA	Gather relevant information from multiple print and digital sources; take notes,
W.SE.4.6	prioritize and categorize information; provide a list of sources.
NJSLS-ELA	Write routinely over extended time frames (with time for research and revision) and
W.RW.4.7	shorter time frames (a single sitting) for a range of tasks, purposes, and audiences.
NJSLS-ELA	Report on a topic or text, tell a story, or recount an experience in an organized
SL.PI.4.4	manner, using appropriate facts and relevant, descriptive details to support main ideas
	or themes; speak clearly at an understandable pace.

21st Century Life Skills Standards

Activities:

• Students will work both individually and in collaborative groups to research, collect and organize data, at times taking leadership roles to communicate project ideas and new learning to the whole class.

Standard	Student Learning Objectives
9.2.5.CAP.3	Identify qualifications needed to pursue traditional and non-traditional careers and
	occupations.
9.4.5.CI.1	Use appropriate communication technologies to collaborate with individuals with
	diverse perspectives about a local and/or global climate change issue and deliberate
	about possible solutions (e.g., W.4.6, 3.MD.B.3,7.1.NM.IPERS.6).
9.4.5.CI.3	Participate in a brainstorming session with individuals with diverse perspectives to
	expand one's thinking about a topic of curiosity (e.g., 8.2.5.ED.2, 1.5.5.CR1a).

Careers	
Activities:	
 Create models an 	d test variables that affect erosion.
Practice	Description
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways,
and innovation.	and they contribute those ideas in a useful and productive manner to improve their
	organization. They can consider unconventional ideas and suggestions as solutions
	to issues, tasks or problems, and they discern which ideas and suggestions will add
	greatest value. They seek new methods, practices, and ideas from a variety of
	sources and seek to apply those ideas to their own workplace. They take action on
	their ideas and understand how to bring innovation to an organization.
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through
	this when they occur and take action quickly to address the problem; they
	thoughtfully investigate the root cause of the problem prior to introducing
	solutions. Their own actions or the actions of others.
Work productively in	Students positively contribute to every team, whether formal or informal. They
teams while using	apply an awareness of cultural difference to avoid barriers to productive and
cultural/global	positive interaction. They find ways to increase the engagement and contribution of
competence.	all team members. They plan and facilitate effective team meetings.

Standards			
Standard #	Standard Description	Student Learning Objective	Clarification Statement
4-ESS1-1	Earth's Place in the	Identify evidence from patterns	Examples of evidence from
	Universe	in rock formations and fossils in	patterns could include rock
		rock layers to support an	layers with marine shell fossils
		explanation for changes in a	above rock layers with plant
		landscape over time.	fossils and no shells, indicating
			a change from land to water
			over time; and, a canyon with
			different rock layers in the walls
			and a river in the bottom,
			indicating that over time a river
			cut through the rock.]
			[Assessment Boundary:
			Assessment does not include
			specific knowledge of the
			mechanism of rock formation or
			memorization of specific rock
			formations and layers.

Version Update: July 2025 5

			Assessment is limited to relative
			time.]
4-ESS2-1	Earth's Systems	Make observations and/or	Maps can include topographic
		measurements to provide	maps of Earth's land and ocean
		evidence of the effects of	floor, as well as maps of the
		weathering or the rate of erosion	locations of mountains,
		by water, ice, wind, or	continental boundaries,
		vegetation.	volcanoes, and earthquakes.]

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm

 Adapt a Strategy – Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations

6

- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	4th	2	10 days

Unit Title: Earth Processes

OVERVIEW OF UNIT:

In this unit of study, students apply their knowledge of natural Earth processes to generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans. In order to describe patterns of Earth's features, students analyze and interpret data from maps. The crosscutting concepts of patterns, cause and effect, and the influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. Students are expected to demonstrate grade-appropriate proficiency in planning and carrying out investigations, analyzing and interpreting data, and constructing explanations and designing solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Big Ideas

- Patterns can be used as evidence to support an explanation.
- Maps can help locate the different land and water features of Earth.
- The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns.
- Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans.
- Major mountain chains form inside continents or near their edges.
- Cause-and-effect relationships are routinely identified, tested, and used to explain change.
- Engineers improve existing technologies or develop new ones to increase benefits, decrease known risks, and meet societal demands.
- A variety of hazards result from natural processes (e.g., earthquakes, floods, tsunamis, volcanic eruptions).
- Humans cannot eliminate the hazards, but they can take steps to reduce their impacts.
- Research on a problem should be carried out before beginning to design a solution.
- Testing a solution involves investigating how well it performs under a range of likely conditions.
- At whatever stage, communicating with peers about proposed solutions to a problem is an important part of the design process, and shared ideas can lead to improved designs.
- Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved.
- Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.

• Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed.

Essential Questions

- Is it possible to engineer ways to protect humans from natural Earth processes?
- What can maps tell us about the features of the world?
- In what ways can the impacts of natural Earth processes on humans be reduced?

Objectives

- Students will be able to evaluate if it is possible to engineer ways to protect humans from natural Earth.
- Students will be able to describe what maps tell us about the features of the world.
- Students will be able to identify and evaluate ways can the impacts of natural Earth processes on humans be reduced.

Assessment	
Benchmark:	
 Unit Assessments 	
Alternative:	
 Performance Assessments 	
Projects	
 Models 	
 Modified Tests Independently Developed by 	

Key Vocabulary

Teacher

Topographic map, Earthquake, volcano, continental boundary, tsunami, flood, trench

Resources & Materials

STEMscopes

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website

Claim-Evidence- Reasoning

• Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

• Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build schema, watch videos, complete labs, take assessments and collect data.

9

senema, water videos, complete idos, take assessments and concertatur.	
Standard	Standard Description
8.1.5.DA.1	Collect, organize, and display data in order to highlight relationships or support a claim.
8.1.5.DA.5	Propose cause-and-effect relationships, predict outcomes, or communicate ideas using data.

Interdisciplinary Integration

Activities:

- Students will read informational text for knowledge and understanding.
- Students will synthesize and present new learning in oral, written and/or visual projects and/or presentations.

Resources:

- Teacher Vision Cross-Curricular Theme Map https://www.teachervision.com/teaching-methods/curriculum-planning/7167.html
- Engineering Go For It! http://egfi-k12.org/
- US Department of Education STEM http://www.ed.gov/stem
- Intel STEM Resource http://www.intel.com/content/www/us/en/education/k12/stem.html
- NASA STEM http://www.nasa.gov/audience/foreducators/expeditions/stem/#.VYrO2flViko
- PBS STEM http://www.pbs.org/teachers/stem/#content
- STEM Works http://stem-works.com/activities
- What Every Educator Should Know About Using Google by Shell Education
- Promoting Literacy in all Subjects by Glencoe http://www.glencoe.com/sec/teachingtoday/subject/promoting_literacy.phtml
- International Literacy Association Read Write Think http://www.readwritethink.org/

Standard	Standard Description
NJSLS-ELA	Read with sufficient accuracy and fluency to support comprehension.
L.RF.4.4	
NJSLS-ELA	Write informative/explanatory texts to examine a topic and convey ideas and
W.IW.4.2	information clearly.
NJSLS-ELA	Conduct short research projects that use multiple reference sources (print and
W.WR.4.5	non-print) and build knowledge through investigation of different aspects of a topic.
NJSLS-ELA	Gather relevant information from multiple print and digital sources; take notes,
W.SE.4.6	prioritize and categorize information; provide a list of sources.
NJSLS-ELA	Write routinely over extended time frames (with time for research and revision) and
W.RW.4.7	shorter time frames (a single sitting) for a range of tasks, purposes, and audiences.
NJSLS-ELA	Report on a topic or text, tell a story, or recount an experience in an organized
SL.PI.4.4	manner, using appropriate facts and relevant, descriptive details to support main ideas
	or themes; speak clearly at an understandable pace.

21st Century Life Skills Standards

Activities:

• Students will work both individually and in collaborative groups to research, collect and organize data, at times taking leadership roles to communicate project ideas and new learning to the whole class.

Standard	Student Learning Objectives
9.2.5.CAP.3	Identify qualifications needed to pursue traditional and non-traditional careers and
	occupations.
9.4.5.CI.1	Use appropriate communication technologies to collaborate with individuals with
	diverse perspectives about a local and/or global climate change issue and deliberate
	about possible solutions (e.g., W.4.6, 3.MD.B.3,7.1.NM.IPERS.6).
9.4.5.CI.3	Participate in a brainstorming session with individuals with diverse perspectives to
	expand one's thinking about a topic of curiosity (e.g., 8.2.5.ED.2, 1.5.5.CR1a).

Careers

Activities:

• Students will research regarding Earth's natural processes and create a PSA including causes, effects, measurement scales, and safety tips for each process.

measurement searces, and survey tips for each process.	
Practice	Description
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways,
and innovation.	and they contribute those ideas in a useful and productive manner to improve their
	organization. They can consider unconventional ideas and suggestions as solutions
	to issues, tasks or problems, and they discern which ideas and suggestions will add
	greatest value. They seek new methods, practices, and ideas from a variety of
	sources and seek to apply those ideas to their own workplace. They take action on
	their ideas and understand how to bring innovation to an organization.
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through
	this when they occur and take action quickly to address the problem; they
	thoughtfully investigate the root cause of the problem prior to introducing
	solutions. Their own actions or the actions of others.
Work productively in	Students positively contribute to every team, whether formal or informal. They
teams while using	apply an awareness of cultural difference to avoid barriers to productive and
cultural/global	positive interaction. They find ways to increase the engagement and contribution of
competence.	all team members. They plan and facilitate effective team meetings.

Standards			
Standard #	Standard Description	Student Learning Objective	Clarification Statement
4-ESS2-2	Earth's Systems	Analyze and interpret data	Maps can include
		from maps to describe	topographic maps of Earth's
		patterns of Earth's features.	land and ocean floor, as well

, 01 21011 C P 01	atc. July 2025		
			as maps of the locations of mountains, continental
			boundaries, volcanoes, and
			earthquakes.]
4-ESS3-2	Earth and Human Activity	Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.	Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]
3-5-ETS1-2	Engineering Design	Generate and compare	1 1
		multiple possible solutions to	
		a problem based on how well	
		each is likely to meet the	
		criteria and constraints of the	
		problem.	
3-5-ETS1-3	Engineering Design	Plan and carry out fair tests	
		in which variables are	
		controlled and failure points	
		are considered to identify	
		aspects of a model or	
		prototype that can be	
		improved.	

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks

12

- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	4th	3	15 days

Unit Title: Structure and Function

OVERVIEW OF UNIT:

In this unit of study, students develop an understanding that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. The crosscutting concepts of systems and system models are called out as organizing concepts for this disciplinary core idea. Students are expected to demonstrate grade-appropriate proficiency in engaging in argument from evidence. Students are also expected to use this practice to demonstrate an understanding of the core idea.

Big Ideas

- A system can be described in terms of its components and their interactions.
- Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.

Essential Questions

• How do the internal and external parts of plants and animals support their survival, growth, behavior, and reproduction?

Objectives

• Students will be able to analyze how the internal and external parts of plants and animals support their survival, growth, behavior, and reproduction.

Assessment

Formative Assessment:

- Labs
- Claim-Evidence- Reasoning
- Class Discussions

Summative Assessment:

- Multiple Choice Assessment
- Open Ended Response
- Claim-Evidence- Reasoning

Benchmark:

Unit Assessments

Alternative:

- Performance Assessments
- Projects
- Models
- Modified Tests Independently Developed by Teacher

Key Vocabulary

Body system, homeostasis ,reproduction, life cycle

Resources & Materials

- Animal Mouth Structures
- Human Body project & rubric
- Egg Incubation and monitoring

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

• Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build schema, watch videos, complete labs, take assessments and collect data.

Standard	Standard Description
8.1.5.DA.1	Collect, organize, and display data in order to highlight relationships or support a
	claim.
8.1.5.DA.5	Propose cause-and-effect relationships, predict outcomes, or communicate ideas
	using data.

Interdisciplinary Integration

Activities:

- Students will read informational text for knowledge and understanding.
- Students will synthesize and present new learning in oral, written and/or visual projects and/or presentations.

Resources:

- Teacher Vision Cross-Curricular Theme Map https://www.teachervision.com/teaching-methods/curriculum-planning/7167.html
- Engineering Go For It! http://egfi-k12.org/
- US Department of Education STEM http://www.ed.gov/stem
- Intel STEM Resource http://www.intel.com/content/www/us/en/education/k12/stem.html
- NASA STEM http://www.nasa.gov/audience/foreducators/expeditions/stem/#.VYrO2flViko
- PBS STEM http://www.pbs.org/teachers/stem/#content
- STEM Works http://stem-works.com/activities
- What Every Educator Should Know About Using Google by Shell Education
- Promoting Literacy in all Subjects by Glencoe -http://www.glencoe.com/sec/teachingtoday/subject/promoting_literacy.phtml
- International Literacy Association Read Write Think http://www.readwritethink.org/

Standard	Standard Description
NJSLS-ELA	Read with sufficient accuracy and fluency to support comprehension.
L.RF.4.4	
NJSLS-ELA	Write informative/explanatory texts to examine a topic and convey ideas and
W.IW.4.2	information clearly.
NJSLS-ELA	Conduct short research projects that use multiple reference sources (print and
W.WR.4.5	non-print) and build knowledge through investigation of different aspects of a topic.
NJSLS-ELA	Gather relevant information from multiple print and digital sources; take notes,
W.SE.4.6	prioritize and categorize information; provide a list of sources.
NJSLS-ELA	Write routinely over extended time frames (with time for research and revision) and
W.RW.4.7	shorter time frames (a single sitting) for a range of tasks, purposes, and audiences.
NJSLS-ELA	Report on a topic or text, tell a story, or recount an experience in an organized
SL.PI.4.4	manner, using appropriate facts and relevant, descriptive details to support main ideas
	or themes; speak clearly at an understandable pace.

21st Century Life Skills Standards **Activities:** Students will work both individually and in collaborative groups to research, collect and organize data, at times taking leadership roles to communicate project ideas and new learning to the whole class. Standard **Student Learning Objectives** 9.2.5.CAP.3 Identify qualifications needed to pursue traditional and non-traditional careers and occupations. Use appropriate communication technologies to collaborate with individuals with 9.4.5.CI.1 diverse perspectives about a local and/or global climate change issue and deliberate about possible solutions (e.g., W.4.6, 3.MD.B.3,7.1.NM.IPERS.6). Participate in a brainstorming session with individuals with diverse perspectives to 9.4.5.CI.3 expand one's thinking about a topic of curiosity (e.g., 8.2.5.ED.2, 1.5.5.CR1a).

Careers			
Activities:	Activities:		
Students will incu	ubate and hatch chicken eggs.		
Practice	Description		
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways,		
and innovation.	and they contribute those ideas in a useful and productive manner to improve their		
	organization. They can consider unconventional ideas and suggestions as solutions		
	to issues, tasks or problems, and they discern which ideas and suggestions will add		
	greatest value. They seek new methods, practices, and ideas from a variety of		
	sources and seek to apply those ideas to their own workplace. They take action on		
	their ideas and understand how to bring innovation to an organization.		
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the		
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the		
	problem and carefully consider the options to solve the problem. Once a solution is		

problems and persevere	agreed upon, they follow through to ensure the problem is solved, whether through
in solving them.	this when they occur and take action quickly to address the problem; they
	thoughtfully investigate the root cause of the problem prior to introducing
	solutions. Their own actions or the actions of others.
Work productively in	Students positively contribute to every team, whether formal or informal. They
teams while using	apply an awareness of cultural difference to avoid barriers to productive and
cultural/global	positive interaction. They find ways to increase the engagement and contribution of
competence.	all team members. They plan and facilitate effective team meetings.

	Standards			
Standard #	Standard Description	Student Learning Objective	Clarification Statement	
4-LS1-1	From Molecules to	Construct an argument that	Examples of structures could	
	Organisms: Structures and	plants and animals	include thorns, stems, roots,	
	Processes	have internal and external	colored petals, heart,	
		structures that function to	stomach, lung, brain, and	
		support survival, growth,	skin.] [Assessment	
		behavior, and reproduction.	Boundary: Assessment is	
			limited to macroscopic	
			structures within plant and	
			animal systems.]	

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups

• NJDOE resources - http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	4th	4	10 days

Unit Title: How Organisms Process Information

OVERVIEW OF UNIT:

In this unit of study, students are expected to develop an understanding that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. By developing a model, they describe that an object can be seen when light reflected from its surface enters the eye. The crosscutting concepts of cause and effect, systems and system models, and structure and function are called out as organizing concepts for these disciplinary core ideas.

Big Ideas

- A system can be described in terms of its components and its interactions.
- Different sense receptors are specialized for particular kinds of information, which may be then processed by the animal's brain.
- Animals are able to use their perceptions and memories to guide their actions.
- Cause-and-effect relationships are routinely identified.
- An object can be seen when light reflected from its surface enters the eyes.

Essential Questions

- How do animals use their perceptions and memories to make decisions?
- How do animals receive and process different types of information from their environment in order to respond appropriately?
- What happens when light from an object enters the eye?

Objectives

- Students will be able to describe how animals use their perceptions and memories to make decisions.
- Students will be able to detail how animals receive and process different types of information from their environment in order to respond appropriately.
- Students will be able to describe what happens when light from an object enters the eye.
- Students will use a model to test interactions concerning the functioning of a natural system.

Assessment

Formative Assessment:

- Labs
- Claim-Evidence- Reasoning
- Class Discussions

Benchmark:

Unit Assessments

Alternative:

• Performance Assessments

version e paacet oury 2020	
Summative Assessment:	Projects
 Multiple Choice Assessment 	 Models
 Open Ended Response 	 Modified Tests Independently Developed by
 Claim-Evidence- Reasoning 	Teacher

Key Vocabulary

Brain processes, structure, function, reflection, refraction, receptors,

Resources & Materials

- Pinhole Cameras and Eyes
- The Life of Environments
- <u>Time to Think?</u>
- Catch It!

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

• Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build schema, watch videos, complete labs, take assessments and collect data.

Standard	Standard Description
8.1.5.DA.1	Collect, organize, and display data in order to highlight relationships or support a
	claim.
8.1.5.DA.5	Propose cause-and-effect relationships, predict outcomes, or communicate ideas
	using data.

Interdisciplinary Integration

Activities:

- Students will read informational text for knowledge and understanding.
- Students will synthesize and present new learning in oral, written and/or visual projects and/or presentations.

Resources:

- Teacher Vision Cross-Curricular Theme Map https://www.teachervision.com/teaching-methods/curriculum-planning/7167.html
- Engineering Go For It! http://egfi-k12.org/

- US Department of Education STEM http://www.ed.gov/stem
- Intel STEM Resource http://www.intel.com/content/www/us/en/education/k12/stem.html
- NASA STEM http://www.nasa.gov/audience/foreducators/expeditions/stem/#.VYrO2flViko
- PBS STEM http://www.pbs.org/teachers/stem/#content
- STEM Works http://stem-works.com/activities
- What Every Educator Should Know About Using Google by Shell Education
- Promoting Literacy in all Subjects by Glencoe http://www.glencoe.com/sec/teachingtoday/subject/promoting_literacy.phtml
- International Literacy Association Read Write Think http://www.readwritethink.org/

Standard	Standard Description	
NJSLS-ELA	Read with sufficient accuracy and fluency to support comprehension.	
L.RF.4.4		
NJSLS-ELA	Write informative/explanatory texts to examine a topic and convey ideas and	
W.IW.4.2	information clearly.	
NJSLS-ELA	Conduct short research projects that use multiple reference sources (print and	
W.WR.4.5	non-print) and build knowledge through investigation of different aspects of a topic.	
NJSLS-ELA	Gather relevant information from multiple print and digital sources; take notes,	
W.SE.4.6	prioritize and categorize information; provide a list of sources.	
NJSLS-ELA	Write routinely over extended time frames (with time for research and revision) and	
W.RW.4.7	shorter time frames (a single sitting) for a range of tasks, purposes, and audiences.	
NJSLS-ELA	Report on a topic or text, tell a story, or recount an experience in an organized	
SL.PI.4.4	manner, using appropriate facts and relevant, descriptive details to support main ideas	
	or themes; speak clearly at an understandable pace.	

21st Century Life Skills Standards

Activities:

• Students will work both individually and in collaborative groups to research, collect and organize data, at times taking leadership roles to communicate project ideas and new learning to the whole class.

Standard	Student Learning Objectives	
9.2.5.CAP.3	Identify qualifications needed to pursue traditional and non-traditional careers and	
	occupations.	
9.4.5.CI.1	Use appropriate communication technologies to collaborate with individuals with	
	diverse perspectives about a local and/or global climate change issue and deliberate	
	about possible solutions (e.g., W.4.6, 3.MD.B.3,7.1.NM.IPERS.6).	
9.4.5.CI.3	Participate in a brainstorming session with individuals with diverse perspectives to	
	expand one's thinking about a topic of curiosity (e.g., 8.2.5.ED.2, 1.5.5.CR1a).	

Activities: • Students will create a visual representation of the human body systems, demonstrating how they work individually and interconnectedly. Practice Description

	<i>y</i> = = = = = = = = = = = = = = = = = = =
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways, and
and innovation.	they contribute those ideas in a useful and productive manner to improve their
	organization. They can consider unconventional ideas and suggestions as solutions
	to issues, tasks or problems, and they discern which ideas and suggestions will add
	greatest value. They seek new methods, practices, and ideas from a variety of
	sources and seek to apply those ideas to their own workplace. They take action on
	their ideas and understand how to bring innovation to an organization.
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through
	this when they occur and take action quickly to address the problem; they
	thoughtfully investigate the root cause of the problem prior to introducing solutions.
	Their own actions or the actions of others.
Work productively in	Students positively contribute to every team, whether formal or informal. They
teams while using	apply an awareness of cultural difference to avoid barriers to productive and
cultural/global	positive interaction. They find ways to increase the engagement and contribution of
competence.	all team members. They plan and facilitate effective team meetings.

Standards			
Standard #	Standard Description	Student Learning Objective	Clarification Statement
4-LS1-2	From Molecules to	Use a model to describe	Emphasis is on systems of
	Organisms: Structures and	that animals receive different	information transfer.]
	Processes	types of information through	[Assessment Boundary:
		their senses, process the	Assessment does not include
		information in their brain,	the mechanisms by which the
		and respond to the	brain stores and recalls
		information in different	information or the
		ways.	mechanisms of how sensory
			receptors function.]

Students with 504 plans Preferential seating Guided notes Extra time Teacher check-ins Use graphic organizers Redirect attention Prioritize tasks Small group testing Provide modifications & accommodations per individual student's 504 plan Special Education

Differentiation

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	4th	5	15 days

Unit Title: Transfer of Energy

OVERVIEW OF UNIT:

In this unit of study, fourth-grade students develop an understanding that energy can be transferred from place to place by sound, light, heat, and electrical currents. Students also obtain and combine information to describe that energy and fuels are derived from natural resources and that their uses affect the environment. The crosscutting concepts of cause and effect, energy and matter, and the interdependence of science, engineering, and technology, and influence of science, engineering, and technology on society and the natural world are called out as organizing concepts for these disciplinary core ideas. Students are expected to demonstrate grade-appropriate proficiency in planning and carrying out investigations and obtaining, evaluating, and communicating information. Students are also expected to use these practices to demonstrate an understanding of the core ideas.

Big Ideas

- Energy can be transferred in various ways and between objects.
- Energy can be moved from place to place through sound, light, or electric currents.
- Energy is present whenever there are moving objects, sound, light, or heat.
- Light also transfers energy from place to place.
- Energy can also be transferred from place to place by electric currents; the currents may have been produced to begin with by transforming the energy of motion into electrical energy.
- Cause-and-effect relationships are routinely identified and used to explain change.
- Knowledge of relevant scientific concepts and research findings is important in engineering.
- Over time, people's needs and wants change, as do their demands for new and improved technologies.
- Energy and fuels that humans use are derived from natural sources.
- The use of energy and fuels from natural sources affects the environment in multiple ways.
- Some resources are renewable over time, and others are not.

Essential Questions

- Where do we get the energy we need for modern life?
- How does energy move?
- From what natural resources are energy and fuels derived?
- In what ways does the human use of natural resources affect the environment?

Objectives

- Students will discuss where we get the energy we need for modern life.
- Students will describe how energy moves.

- Students will identify from what natural resources energy and fuels derived.
- Students will list the use of natural resources by humans to affect the environment.

Assessment		
Formative Assessment:	Benchmark:	
• Labs	 Unit Assessments 	
Claim-Evidence- Reasoning		
 Class Discussions 	Alternative:	
	 Performance Assessments 	
Summative Assessment:	Projects	
Multiple Choice Assessment	 Models 	
Open Ended Response	 Modified Tests Independently Developed by 	
Claim-Evidence- Reasoning	Teacher	

Key Vocabulary
energy, transfer, current, motion, sound, heat, light, fuel, renewable, non-renewable

Resources & Materials

- Switch Energy Project
 - o http://switchenergyproject.com/education/
- Wind Generator
 - https://learn.concord.org/resources/665/wind-generator
- Thermal Energy Transfer
 - https://nj.pbslearningmedia.org/resource/lsps07-sci-phys-thermalenergy/thermal-energy-transfer/

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

• Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build schema, watch videos, complete labs, take assessments and collect data.

Standard	Standard Description	
8.1.5.DA.1	Collect, organize, and display data in order to highlight relationships or support a	
	claim.	

8.1.5.DA.5	Propose cause-and-effect relationships, predict outcomes, or communicate ideas
	using data.

Interdisciplinary Integration

Activities:

- Students will read informational text for knowledge and understanding.
- Students will synthesize and present new learning in oral, written and/or visual projects and/or presentations.

Resources:

- Teacher Vision Cross-Curricular Theme Map https://www.teachervision.com/teaching-methods/curriculum-planning/7167.html
- Engineering Go For It! http://egfi-k12.org/
- US Department of Education STEM http://www.ed.gov/stem
- Intel STEM Resource http://www.intel.com/content/www/us/en/education/k12/stem.html
- NASA STEM http://www.nasa.gov/audience/foreducators/expeditions/stem/#.VYrO2flViko
- PBS STEM http://www.pbs.org/teachers/stem/#content
- STEM Works http://stem-works.com/activities
- What Every Educator Should Know About Using Google by Shell Education
- Promoting Literacy in all Subjects by Glencoe http://www.glencoe.com/sec/teachingtoday/subject/promoting_literacy.phtml
- International Literacy Association Read Write Think http://www.readwritethink.org/

Standard	Standard Description
NJSLS-ELA	Read with sufficient accuracy and fluency to support comprehension.
L.RF.4.4	
NJSLS-ELA	Write informative/explanatory texts to examine a topic and convey ideas and
W.IW.4.2	information clearly.
NJSLS-ELA	Conduct short research projects that use multiple reference sources (print and
W.WR.4.5	non-print) and build knowledge through investigation of different aspects of a topic.
NJSLS-ELA	Gather relevant information from multiple print and digital sources; take notes,
W.SE.4.6	prioritize and categorize information; provide a list of sources.
NJSLS-ELA	Write routinely over extended time frames (with time for research and revision) and
W.RW.4.7	shorter time frames (a single sitting) for a range of tasks, purposes, and audiences.
NJSLS-ELA	Report on a topic or text, tell a story, or recount an experience in an organized
SL.PI.4.4	manner, using appropriate facts and relevant, descriptive details to support main ideas
	or themes; speak clearly at an understandable pace.

21st Century Life Skills Standards

Activities:

Students will work both individually and in collaborative groups to research, collect and organize
data, at times taking leadership roles to communicate project ideas and new learning to the whole
class.

Class.	
Standard	Student Learning Objectives

9.2.5.CAP.3	Identify qualifications needed to pursue traditional and non-traditional careers and
	occupations.
9.4.5.CI.1	Use appropriate communication technologies to collaborate with individuals with
	diverse perspectives about a local and/or global climate change issue and deliberate
	about possible solutions (e.g., W.4.6, 3.MD.B.3,7.1.NM.IPERS.6).
9.4.5.CI.3	Participate in a brainstorming session with individuals with diverse perspectives to
	expand one's thinking about a topic of curiosity (e.g., 8.2.5.ED.2, 1.5.5.CR1a).

Careers			
Activities:			
 Students will plan 	n and present lessons about an expert form of energy.		
Practice	Description		
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways,		
and innovation.	and they contribute those ideas in a useful and productive manner to improve their		
	organization. They can consider unconventional ideas and suggestions as solutions		
	to issues, tasks or problems, and they discern which ideas and suggestions will add		
	greatest value. They seek new methods, practices, and ideas from a variety of		
	sources and seek to apply those ideas to their own workplace. They take action on		
	their ideas and understand how to bring innovation to an organization.		
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the		
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the		
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is		
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through		
	this when they occur and take action quickly to address the problem; they		
	thoughtfully investigate the root cause of the problem prior to introducing		
	solutions. Their own actions or the actions of others.		
Work productively in	Students positively contribute to every team, whether formal or informal. They		
teams while using	apply an awareness of cultural difference to avoid barriers to productive and		
cultural/global	positive interaction. They find ways to increase the engagement and contribution of		
competence.	all team members. They plan and facilitate effective team meetings.		

Standards				
Standard #	Standard Description	Clarification Statement		
4-PS3-2		Make observations to provide	Assessment does not include	
		evidence that energy can be	quantitative measurements of	
		transferred from place to	energy	
		place by sound, light, heat,		
		and electric currents		
4-ESS3-1		Obtain and combine		
		information to describe that		
		energy and fuels are derived		
		from natural resources and		

•		their uses affect the	
		environment.	
3-5-ETS1-1	Engineering Design	Define a simple design	
		problem reflecting a need or	
		a want that includes specified	
		criteria for success and	
		constraints on materials,	
		time, or cost.	
3-5-ETS1-2	Engineering Design	Generate and compare	
		multiple possible solutions to	
		a problem based on how well	
		each is likely to meet the	
		criteria and constraints of the	
		problem.	
3-5-ETS1-3	Engineering Design	Plan and carry out fair tests	
		in which variables are	
		controlled and failure points	
		are considered to identify	
		aspects of a model or	
		prototype that can be	
		improved.	

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes

28

- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	4th	6	10-15 days

Unit Title: Forces and Motion

OVERVIEW OF UNIT:

In this unit of study, students are able to use evidence to construct an explanation of the relationship between the speed of an object and the energy of that object, and are expected to develop an understanding that energy can be transferred from object to object through collisions. The crosscutting concept of energy and matter is called out as an organizing concept. Students are expected to demonstrate grade-appropriate proficiency in asking questions, defining problems, and constructing explanations, and designing solutions. Students are also expected to use these practices to demonstrate an understanding of the core ideas.

Big Ideas

- Energy can be transferred in various ways and between objects.
- The faster a given object is moving, the more energy it possesses.
- Energy can be transferred in various ways and between objects.
- Energy can be moved from place to place by moving objects or through sound, light, or electric currents.
- Energy is present whenever there are moving objects, sound, light, or heat.
- When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced.
- When objects collide, the contact forces transfer energy so as to change the objects' motions.

Essential Questions

- What is the relationship between the speed of an object and the energy of that object?
- What is the relationship between the speed of an object and its energy?
- In what ways does energy change when objects collide?

Objectives

- Students will be able to describe the relationship between the speed of an object and the energy of that object.
- Students will be able to explain the relationship between the speed of an object and its energy.
- Students will be able to list ways energy changes when objects collide.

Assessment

Formative Assessment:

Benchmark:

• Labs

Unit Assessments

• Claim-Evidence- Reasoning

Class Discussions	Alternative:
	 Performance Assessments
Summative Assessment:	Projects
Multiple Choice Assessment	 Models
Open Ended Response	 Modified Tests Independently Developed by
Claim-Evidence- Reasoning	Teacher

Key Vocabulary

Energy, energy transfer, speed, collision, heat, sound, current, gravity, force, motion,

Resources & Materials

- Spool Racers
- http://www.scienceworld.ca/resources/activities/popcan-porsche
- http://pbskids.org/designsquad/build/rubber-band-car/
- Force and Motion:
- Advanced High-Powered Rockets:

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

• Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build schema, watch videos, complete labs, take assessments and collect data.

Standard	Standard Description		
8.1.5.DA.1	Collect, organize, and display data in order to highlight relationships or support a claim.		
8.1.5.DA.5	Propose cause-and-effect relationships, predict outcomes, or communicate ideas using data.		

Interdisciplinary Integration

Activities:

- Students will read informational text for knowledge and understanding.
- Students will synthesize and present new learning in oral, written and/or visual projects and/or presentations.

Resources:

- Teacher Vision Cross-Curricular Theme Map https://www.teachervision.com/teaching-methods/curriculum-planning/7167.html
- Engineering Go For It! http://egfi-k12.org/
- US Department of Education STEM http://www.ed.gov/stem
- Intel STEM Resource http://www.intel.com/content/www/us/en/education/k12/stem.html
- NASA STEM http://www.nasa.gov/audience/foreducators/expeditions/stem/#.VYrO2flViko
- PBS STEM http://www.pbs.org/teachers/stem/#content
- STEM Works http://stem-works.com/activities
- What Every Educator Should Know About Using Google by Shell Education
- Promoting Literacy in all Subjects by Glencoe -http://www.glencoe.com/sec/teachingtoday/subject/promoting_literacy.phtml
- International Literacy Association Read Write Think http://www.readwritethink.org/

Standard	Standard Description
NJSLS-ELA	Read with sufficient accuracy and fluency to support comprehension.
L.RF.4.4	
NJSLS-ELA	Write informative/explanatory texts to examine a topic and convey ideas and
W.IW.4.2	information clearly.
NJSLS-ELA	Conduct short research projects that use multiple reference sources (print and
W.WR.4.5	non-print) and build knowledge through investigation of different aspects of a topic.
NJSLS-ELA	Gather relevant information from multiple print and digital sources; take notes,
W.SE.4.6	prioritize and categorize information; provide a list of sources.
NJSLS-ELA	Write routinely over extended time frames (with time for research and revision) and
W.RW.4.7	shorter time frames (a single sitting) for a range of tasks, purposes, and audiences.
NJSLS-ELA	Report on a topic or text, tell a story, or recount an experience in an organized
SL.PI.4.4	manner, using appropriate facts and relevant, descriptive details to support main ideas
	or themes; speak clearly at an understandable pace.

21st Century Life Skills Standards

Activities:

• Students will work both individually and in collaborative groups to research, collect and organize data, at times taking leadership roles to communicate project ideas and new learning to the whole class.

Standard	Student Learning Objectives	
9.2.5.CAP.3	Identify qualifications needed to pursue traditional and non-traditional careers and	
	occupations.	
9.4.5.CI.1	Use appropriate communication technologies to collaborate with individuals with	
	diverse perspectives about a local and/or global climate change issue and deliberate	
	about possible solutions (e.g., W.4.6, 3.MD.B.3,7.1.NM.IPERS.6).	
9.4.5.CI.3	Participate in a brainstorming session with individuals with diverse perspectives to	
	expand one's thinking about a topic of curiosity (e.g., 8.2.5.ED.2, 1.5.5.CR1a).	

	Careers			
Activities:	Activities:			
Students will desi	gn experiments to test the motion of energy.			
Practice	Description			
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways,			
and innovation.	and they contribute those ideas in a useful and productive manner to improve their			
	organization. They can consider unconventional ideas and suggestions as solutions			
	to issues, tasks or problems, and they discern which ideas and suggestions will add			
	greatest value. They seek new methods, practices, and ideas from a variety of			
	sources and seek to apply those ideas to their own workplace. They take action on			
	their ideas and understand how to bring innovation to an organization.			
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the			
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the			
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is			
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through			
	this when they occur and take action quickly to address the problem; they			
	thoughtfully investigate the root cause of the problem prior to introducing			
	solutions. Their own actions or the actions of others.			
Work productively in	Students positively contribute to every team, whether formal or informal. They			
teams while using	apply an awareness of cultural difference to avoid barriers to productive and			
cultural/global	positive interaction. They find ways to increase the engagement and contribution of			
competence.	all team members. They plan and facilitate effective team meetings.			

Standards				
Standard #	Standard Description	Student Learning Objective	Clarification Statement	
4-PS3-1	Energy	Use evidence to construct an	Assessment does not include	
		explanation relating the speed of	quantitative measures of	
		an object to the energy of that	changes in the speed of an	
		object.	object or on any precise or	
			quantitative definition of energy.	
4-PS3-3	Energy	Ask questions and predict	Emphasis is on the change in the	
		outcomes about the changes in	energy due to the change in	
		energy that occur when objects	speed, not on the forces, as	
		collide.	objects interact.] [Assessment	
			Boundary: Assessment does not	
			include quantitative	
			measurements of energy.	
3-5-ETS1-1	Engineering Design	Define a simple design problem		
		reflecting a need or a want that		
		includes specified criteria for		
		success and constraints on		
		materials, time, or cost.		

3-5-ETS1-2	Engineering Design	Generate and compare multiple	
		possible solutions to a problem	
		based on how well each is likely	
		to meet the criteria and	
		constraints of the problem.	
3-5-ETS1-3	Engineering Design	Plan and carry out fair tests in	
		which variables are controlled	
		and failure points are considered	
		to identify aspects of a model or	
		prototype that can be improved.	

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software

- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Version Update: July 2025 Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	4th	7	10 days

Unit Title: Using Engineering Design with Force and Motion Systems

OVERVIEW OF UNIT:

In this unit of study, students use evidence to construct an explanation of the relationship between the speed of an object and the energy of that object. Students develop an understanding that energy can be transferred from place to place by sound, light, heat, and electrical currents or from objects through collisions. They apply their understanding of energy to design, test, and refine a device that converts energy from one form to another. The crosscutting concepts of energy and matter and the influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. Students are expected to demonstrate grade-appropriate proficiency in asking questions and defining problems, planning and carrying out investigations, constructing explanations, and designing solutions. Students are also expected to use these practices to demonstrate their understanding of the core ideas.

Big Ideas

- Science affects everyday life.
- Most scientists and engineers work in teams.
- Engineers improve existing technologies or develop new ones.
- People's needs and wants change over time, as do their demands for new and improved technologies.
- Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands.
- Energy can be transferred in various ways and between objects.
- Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy.
- The expression "produce energy" typically refers to the conversion of stored energy into a desired form for practical use.
- Possible solutions to a problem are limited by the available materials and resources (constraints).
- The success of a designed solution is determined by considering the desired features of a solution (criteria).
- Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.
- Research on a problem should be carried out before beginning to design a solution.
- Testing a solution involves investigating how well it performs under a range of likely conditions.
- At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs.
- Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved.

36

• Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.

Essential Questions

• How can scientific ideas be applied to design, test, and refine a device that converts energy from one form to another?

Objectives

• Students will be able to describe how scientific ideas be applied to design, test, and refine a device that converts energy from one form to another.

Assessment

Formative Assessment:

- Labs
- Claim-Evidence- Reasoning
- Class Discussions

Summative Assessment:

- Multiple Choice Assessment
- Open Ended Response
- Claim-Evidence- Reasoning

Benchmark:

• Unit Assessments

Alternative:

- Performance Assessments
- Projects
- Models
- Modified Tests Independently Developed by Teacher

Key Vocabulary

Energy transfer, problem, investigation, controlled variable, uncontrolled variable, prototype, model,

Resources & Materials

- The Sound of Science
- Energy Makes Things Happen: The Boy Who Harnessed the Wind
- Light Your Way
- http://www.childrensengineering.org/technology/designbriefs.php

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

 Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build 		
schema, watch videos, complete labs, take assessments and collect data.		
Standard Description		
8.1.5.DA.1 Collect, organize, and display data in order to highlight relationships or support a		
claim.		
8.1.5.DA.5 Propose cause-and-effect relationships, predict outcomes, or communicate ideas		

Interdisciplinary	Integration

Activities:

- Students will read informational text for knowledge and understanding.
- Students will synthesize and present new learning in oral, written and/or visual projects and/or presentations.

Resources:

- Teacher Vision Cross-Curricular Theme Map https://www.teachervision.com/teaching-methods/curriculum-planning/7167.html
- Engineering Go For It! http://egfi-k12.org/

using data.

- US Department of Education STEM http://www.ed.gov/stem
- Intel STEM Resource http://www.intel.com/content/www/us/en/education/k12/stem.html
- NASA STEM http://www.nasa.gov/audience/foreducators/expeditions/stem/#.VYrO2flViko
- PBS STEM http://www.pbs.org/teachers/stem/#content
- STEM Works http://stem-works.com/activities
- What Every Educator Should Know About Using Google by Shell Education
- Promoting Literacy in all Subjects by Glencoe http://www.glencoe.com/sec/teachingtoday/subject/promoting_literacy.phtml
- International Literacy Association Read Write Think http://www.readwritethink.org/

Standard	Standard Description	
NJSLS-ELA	Read with sufficient accuracy and fluency to support comprehension.	
L.RF.4.4		
NJSLS-ELA	Write informative/explanatory texts to examine a topic and convey ideas and	
W.IW.4.2	information clearly.	
NJSLS-ELA	Conduct short research projects that use multiple reference sources (print and	
W.WR.4.5	non-print) and build knowledge through investigation of different aspects of a topic.	
NJSLS-ELA	Gather relevant information from multiple print and digital sources; take notes,	
W.SE.4.6	prioritize and categorize information; provide a list of sources.	
NJSLS-ELA	Write routinely over extended time frames (with time for research and revision) and	
W.RW.4.7	shorter time frames (a single sitting) for a range of tasks, purposes, and audiences.	
NJSLS-ELA	A Report on a topic or text, tell a story, or recount an experience in an organized	
SL.PI.4.4	manner, using appropriate facts and relevant, descriptive details to support main ideas	
	or themes; speak clearly at an understandable pace.	

21st Century Life Skills Standards

Activities:

• Students will work both individually and in collaborative groups to research, collect and organize data, at times taking leadership roles to communicate project ideas and new learning to the whole class.

Class.		
Standard	Student Learning Objectives	
9.2.5.CAP.3	Identify qualifications needed to pursue traditional and non-traditional careers and	
	occupations.	
9.4.5.CI.1	Use appropriate communication technologies to collaborate with individuals with	
	diverse perspectives about a local and/or global climate change issue and deliberate	
	about possible solutions (e.g., W.4.6, 3.MD.B.3,7.1.NM.IPERS.6).	
9.4.5.CI.3	Participate in a brainstorming session with individuals with diverse perspectives to	
	expand one's thinking about a topic of curiosity (e.g., 8.2.5.ED.2, 1.5.5.CR1a).	

Careers		
Activities:		
Students will design	ign, test, and refine a device that converts energy from one form to another.	
Practice	Description	
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways,	
and innovation.	and they contribute those ideas in a useful and productive manner to improve their	
	organization. They can consider unconventional ideas and suggestions as solutions	
	to issues, tasks or problems, and they discern which ideas and suggestions will add	
	greatest value. They seek new methods, practices, and ideas from a variety of	
	sources and seek to apply those ideas to their own workplace. They take action on	
	their ideas and understand how to bring innovation to an organization.	
Utilize critical thinking Students readily recognize problems in the workplace, understand the nature of the		
to make sense of problem, and devise effective plans to solve the problem. They are aware of the		
problems and persevere problem and carefully consider the options to solve the problem. Once a soluti		
in solving them. agreed upon, they follow through to ensure the problem is solved, whether through		
	this when they occur and take action quickly to address the problem; they	
	thoughtfully investigate the root cause of the problem prior to introducing	
	solutions. Their own actions or the actions of others.	
Work productively in Students positively contribute to every team, whether formal or informal. They		
teams while using	apply an awareness of cultural difference to avoid barriers to productive and	
cultural/global	positive interaction. They find ways to increase the engagement and contribution of	
competence.	all team members. They plan and facilitate effective team meetings.	

	Standards		
Standard #	Standard Description	Student Learning Objective	Clarification Statement
4-PS3-4	Energy	Apply scientific ideas to design,	Examples of devices could
		test, and refine a device that	include electric circuits that
			convert electrical energy into

	2020	,	
		converts energy from one form	motion energy of a vehicle,
		to another.	light, or sound; and, a passive
			solar heater that converts light
			into heat. Examples of
			constraints could include the
			materials, cost, or time to
			design the device.]
			[Assessment Boundary:
			Devices should be limited to
			those that convert motion
			energy to electric energy or use
			stored energy to cause motion
			or produce light or sound.]
3-5-ETS1-1	Engineering Design	Define a simple design problem	
		reflecting a need or a want that	
		includes specified criteria for	
		success and constraints on	
		materials, time, or cost.	
3-5-ETS1-2	Engineering Design	Generate and compare multiple	
		possible solutions to a problem	
		based on how well each is likely	
		to meet the criteria and	
		constraints of the problem.	
3-5-ETS1-3	Engineering Design	Plan and carry out fair tests in	
		which variables are controlled	
		and failure points are considered	
		to identify aspects of a model or	
		prototype that can be improved.	

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher

- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery
- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students -http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources

Califon Public School Curriculum

Subject:	Grade:	Unit #:	Pacing:
Science	4th	8	10 days

Unit Title: Waves and Information

OVERVIEW OF UNIT:

In this unit of study, students use a model of waves to describe patterns of waves in terms of amplitude and wavelength and to show that waves can cause objects to move. The crosscutting concepts of patterns; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. Students demonstrate grade-appropriate proficiency in developing and using models, planning and carrying out investigations, and constructing explanations, and designing solutions. Students are also expected to use these practices to demonstrate their understanding of the core ideas.

Big Ideas

- Science findings are based on recognizing patterns.
- Similarities and differences in patterns can be used to sort and classify natural phenomena.
- Waves, which are regular patterns of motion, can be made in water by disturbing the surface.
- When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach.
- Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks)
- Similarities and differences in patterns can be used to sort and classify designed products.
- Knowledge of relevant scientific concepts and research findings is important in engineering.
- Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands.
- Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—that is, convert it from digitized form to voice and vice versa.
- Different solutions need to be tested in order to determine which of them best solve the problem, given the criteria and the constraints.
- Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions.
- At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs.
- Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved.

Essential Questions

How can we use waves to gather and transmit information?

- If a beach ball lands in the surf, beyond the breakers, what will happen to it?
- Which team can design a way to use patterns to communicate with someone across the room?

Objectives

- Students will be able to describe how we use waves to gather and transmit information.
- Students will be able to infer if a beach ball lands in the surf, beyond the breakers, what will happen to it.
- Students will be able to design a way to use patterns to communicate with someone across the room.

Assessment		
Formative Assessment: Benchmark:		
• Labs	 Unit Assessments 	
 Claim-Evidence- Reasoning 		
 Class Discussions 	Alternative:	
	 Performance Assessments 	
Summative Assessment:	 Projects 	
 Multiple Choice Assessment 	Models	
 Open Ended Response 	 Modified Tests Independently Developed by 	
 Claim-Evidence- Reasoning 	Teacher	

Key Vocabulary
Waves, wavelength, amplitude, communication, technology

Resources & Materials	
• STEMScopes	

Technology Infusion

Teacher Technology:

- Chromebooks
- Stemscopes website
- Promethean Board

Student Technology:

- Chromebooks
- Stemscopes website

Activities:

• Students will use Chromebooks to access the Stemscopes website to: activate prior knowledge, build schema, watch videos, complete labs, take assessments and collect data.

Standard	Standard Description	
8.1.5.DA.1	Collect, organize, and display data in order to highlight relationships or support a	
	claim.	

8.1.5.DA.5	Propose cause-and-effect relationships, predict outcomes, or communicate ideas
	using data.

Interdisciplinary Integration

Activities:

- Students will read informational text for knowledge and understanding.
- Students will synthesize and present new learning in oral, written and/or visual projects and/or presentations.

Resources:

- Teacher Vision Cross-Curricular Theme Map https://www.teachervision.com/teaching-methods/curriculum-planning/7167.html
- Engineering Go For It! http://egfi-k12.org/
- US Department of Education STEM http://www.ed.gov/stem
- Intel STEM Resource http://www.intel.com/content/www/us/en/education/k12/stem.html
- NASA STEM http://www.nasa.gov/audience/foreducators/expeditions/stem/#.VYrO2flViko
- PBS STEM http://www.pbs.org/teachers/stem/#content
- STEM Works http://stem-works.com/activities
- What Every Educator Should Know About Using Google by Shell Education
- Promoting Literacy in all Subjects by Glencoe http://www.glencoe.com/sec/teachingtoday/subject/promoting_literacy.phtml
- International Literacy Association Read Write Think http://www.readwritethink.org/

Standard	Standard Description		
NJSLS-ELA	Read with sufficient accuracy and fluency to support comprehension.		
L.RF.4.4			
NJSLS-ELA	Write informative/explanatory texts to examine a topic and convey ideas and		
W.IW.4.2	information clearly.		
NJSLS-ELA	Conduct short research projects that use multiple reference sources (print and		
W.WR.4.5	non-print) and build knowledge through investigation of different aspects of a topic.		
NJSLS-ELA	Gather relevant information from multiple print and digital sources; take notes,		
W.SE.4.6	prioritize and categorize information; provide a list of sources.		
NJSLS-ELA	Write routinely over extended time frames (with time for research and revision) and		
W.RW.4.7	shorter time frames (a single sitting) for a range of tasks, purposes, and audiences.		
NJSLS-ELA	Report on a topic or text, tell a story, or recount an experience in an organized		
SL.PI.4.4	manner, using appropriate facts and relevant, descriptive details to support main ideas		
	or themes; speak clearly at an understandable pace.		

21st Century Life Skills Standards

Activities:

Students will work both individually and in collaborative groups to research, collect and organize
data, at times taking leadership roles to communicate project ideas and new learning to the whole
class.

THES.	
Standard	Student Learning Objectives

	. 0	
9.2.5.CAP.3	Identify qualifications needed to pursue traditional and non-traditional careers and	
	occupations.	
9.4.5.CI.1	Use appropriate communication technologies to collaborate with individuals with	
	diverse perspectives about a local and/or global climate change issue and deliberate	
	about possible solutions (e.g., W.4.6, 3.MD.B.3,7.1.NM.IPERS.6).	
9.4.5.CI.3	Participate in a brainstorming session with individuals with diverse perspectives to	
	expand one's thinking about a topic of curiosity (e.g., 8.2.5.ED.2, 1.5.5.CR1a).	

	Careers			
Activities:				
Students will desi	 Students will design a way to use patterns to communicate with someone across the room. 			
Practice	Description			
Demonstrate creativity	Students regularly think of ideas that solve problems in new and different ways,			
and innovation.	and they contribute those ideas in a useful and productive manner to improve their			
	organization. They can consider unconventional ideas and suggestions as solutions			
	to issues, tasks or problems, and they discern which ideas and suggestions will add			
	greatest value. They seek new methods, practices, and ideas from a variety of			
	sources and seek to apply those ideas to their own workplace. They take action on			
	their ideas and understand how to bring innovation to an organization.			
Utilize critical thinking	Students readily recognize problems in the workplace, understand the nature of the			
to make sense of	problem, and devise effective plans to solve the problem. They are aware of the			
problems and persevere	problem and carefully consider the options to solve the problem. Once a solution is			
in solving them.	agreed upon, they follow through to ensure the problem is solved, whether through			
	this when they occur and take action quickly to address the problem; they			
	thoughtfully investigate the root cause of the problem prior to introducing			
	solutions. Their own actions or the actions of others.			
Work productively in	Students positively contribute to every team, whether formal or informal. They			
teams while using	apply an awareness of cultural difference to avoid barriers to productive and			
cultural/global	positive interaction. They find ways to increase the engagement and contribution of			
competence.	all team members. They plan and facilitate effective team meetings.			

Standards			
Standard #	Standard Description	Student Learning Objective	Clarification Statement
4-PS4-1	Waves and their	Develop a model of waves to	Examples of models could
	Applications in	describe patterns in terms of	include diagrams, analogies,
	Technologies for	amplitude and wavelength and	and physical models using
	Information Transfer	that waves can cause objects to	wire to illustrate wavelength
		move.	and amplitude of waves.]
			[Assessment Boundary:
			Assessment does not include
			interference effects,
			electromagnetic waves,
			non-periodic waves, or

•			quantitative models of
			amplitude and wavelength.]
4-PS4-3	Waves and their	Generate and compare multiple	Examples of solutions could
	Applications in	solutions that use patterns to	include drums sending coded
	Technologies for	transfer information.	information through sound
	Information Transfer		waves, using a grid of 1's and
			0's representing black and
			white to send information
			about a picture, and using
			Morse code to send text.]
3-5-ETS1-1	Engineering Design	Define a simple design problem	
		reflecting a need or a want that	
		includes specified criteria for	
		success and constraints on	
		materials, time, or cost.	
3-5-ETS1-2	Engineering Design	Generate and compare multiple	
		possible solutions to a problem	
		based on how well each is	
		likely to meet the criteria and	
		constraints of the problem.	
3-5-ETS1-3	Engineering Design	Plan and carry out fair tests in	
		which variables are controlled	
		and failure points are	
		considered to identify aspects	
		of a model or prototype that can	
		be improved.	

Differentiation

Students with 504 plans

- Preferential seating
- Guided notes
- Extra time
- Teacher check-ins
- Use graphic organizers
- Redirect attention
- Prioritize tasks
- Small group testing
- Provide modifications & accommodations per individual student's 504 plan

Special Education

- Provide modifications & accommodations as listed in the student's IEP
- Position the student near a helping peer or have quick access to the teacher
- Modify or reduce assignments/tasks
- Reduce the length of the assignment for different modes of delivery

- Increase one-to-one time
- Prioritize tasks
- Use graphic organizers
- Use online resources for skill-building
- Provide teacher notes
- Use collaborative grouping strategies, such as small groups
- NJDOE resources http://www.state.nj.us/education/specialed/

Response to Intervention (RTI)

- Tiered interventions following the RTI framework
- Effective RTI strategies for teachers http://www.specialeducationguide.com/pre-k-12/response-to-intervention/effective-rti-strategies-for-teachers/
- Intervention Central http://www.interventioncentral.org/

English Language Learners (ELL)

- Provide text-to-speech
- Use of a translation dictionary or software
- Provide graphic organizers
- NJDOE resources http://www.state.nj.us/education/aps/cccs/ELL.htm
- Adapt a Strategy Adjusting strategies for ESL students http://www.teachersfirst.com/content/esl/adaptstrat.cfm

Enrichment

- Process should be modified: higher order thinking skills, open-ended thinking, discovery
- Utilize project-based learning for greater depth of knowledge
- Utilize exploratory connections to higher-grade concepts
- Contents should be modified: real-world problems, audiences, deadlines, evaluations, transformations
- Learning environments should be modified: student-centered learning, independence, openness, complexity, and groups should be varied
- NJDOE resources