

Ensuring a bright future for every child

2016 Mississippi
 College- and CareerReadiness Standards for Mathematics

Effective Date: 2016-2017 School Year

MISSISSIPPI DEPARTMENT OF EDUCATION
Ensuring a bright future for every child

2016 Mississippi College- and Career-Readiness Standards for Mathematics

Carey M. Wright, Ed.D., State Superintendent of Education
Kim S. Benton, Ed.D., Chief Academic Officer Jean Massey, Executive Director, Office of Secondary Education

Nathan Oakley, Ph.D., Executive Director, Office of Elementary Education and Reading Trecina Green, Executive Director, Office of Professional Development Marla Davis, Ph.D., NBCT, Bureau Director, Office of Secondary Education

Mississippi Department of Education Post Office Box 771 Jackson, Mississippi 39205-0771

Office of Elementary Education and Reading Office of Secondary Education

601-359-2586 www.mde.k12.ms.us/ESE

The Mississippi State Board of Education, the Mississippi Department of Education, the Mississippi School for the Arts, the Mississippi School for the Blind, the Mississippi School for the Deaf, and the Mississippi School for Mathematics and Science do not discriminate on the basis of race, sex, color, religion, national origin, age, or disability in the provision of educational programs and services or employment opportunities and benefits. The following office has been designated to handle inquiries and complaints regarding the nondiscrimination policies of the above mentioned entities:

Director, Office of Human Resources
Mississippi Department of Education
Introduction 5
Acknowledgements Error! Bookmark not defined.
College- and Career-Readiness Standards for Mathematics Overview 9
College- and Career-Readiness Standards for Mathematics Scaffolding Document 16
College- and Career-Readiness Standards for Mathematics (Grades K-5) 18
Fluency/Fluently Defined 19
Grade K 20
Grade 1 25
Grade 2 31
Grade 3 36
Grade 4 43
Grade 5 51
College- and Career-Readiness Standards for Mathematics (Grades 6-8) 58
Grade 6 59
Grade 7 67
Grade 8 74
Acceleration in Middle School 81
Secondary Sequence Options 83
High School Conceptual Categories 84
Compacted Mathematics Grade 7 94
Compacted Mathematics Grade 8 (with Algebra I) 104
Compacted Mathematics Grade 8 (with Integrated Math I) 115
College- and Career-Readiness Standards for Mathematics (Grades 9-12) 126
Secondary Sequence Options 127
High School Overview 128
High School Conceptual Categories 129
High School—Algebra I 140
High School-Geometry 148
High School-Algebra II 155
High School-Integrated Mathematics I 165
High School-Integrated Mathematics II 173
High School-Integrated Mathematics III 182
High School—Advanced Mathematics Plus 191
High School—Algebra III 199
High School-Calculus 204
High School—SREB Math Ready 208
High School—Advanced Placement (AP) Calculus 212
High School—Advanced Placement (AP) Statistics 216
Compensatory Mathematics Course Description 219
Foundations of Algebra Course 220
Glossary 225
Tables 233

Introduction

Mission Statement

The Mississippi Department of Education is dedicated to student success including the improvement of student achievement in mathematics in order to produce citizens who are capable of making complex decisions, solving complex problems, and communicating fluently in a technological society. The 2016 Mississippi College- and Career-Readiness Standards for Mathematics ("The Standards") provide a consistent, clear understanding of what students are expected to know and be able to do by the end of each grade level and course. The standards are designed to be robust and relevant to the real world, reflecting the knowledge and skills that students need for success in college and careers and to compete in the global economy.

Purpose

In an effort to closely align instruction for students who are progressing toward postsecondary study and the workforce, the 2016 Mississippi College- and Career-Readiness Standards for Mathematics include grade- and course-specific standards for K-12 mathematics.

The primary purpose of this document is to provide a basis for curriculum development for Grades K-12 mathematics teachers, outlining what students should know and be able to do by the end of each grade level and course. Courses for grades K-12 are based on the Mississippi College- and Career-Readiness Standards (MS CCRS) for Mathematics. Mississippi-specific courses that were revised to align with the (MS CCRS) for Mathematics include Pre-Calculus (renamed Algebra III) and Calculus.

The Southern Regional Education Board (SREB) Math Ready course is included as a transition to college mathematics courses.

The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5); Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 6-7); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics \& Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically.

The required year for the 2016 Mississippi College- and Career-Readiness Standards for Mathematics is school year 2016-2017.

Technology

The Mississippi Department of Education (MDE) strongly encourages the use of technology in all mathematics classrooms. Technology is essential in teaching and learning mathematics; it influences the mathematics that is taught and enhances students' learning.

The appropriate use of instructional technology is integrated throughout the 2016 Mississippi College- and Career-Readiness Standards for Mathematics. Teaching strategies at each grade level and in every secondary course incorporate technology in the form of calculators, software, or on-line internet resources. The graphing calculator is an integral part of mathematics courses beginning with Grade 6.

The MDE believes strongly in the Principles and Standards for School Mathematics Technology Principle of the National Council for Teachers of Mathematics (NCTM):
"Calculators and computers are reshaping the mathematical landscape, and school mathematics should reflect those changes. Students can learn more mathematics more deeply with the appropriate and responsible use of technology. They can make and test conjectures. They can work at higher levels of generalization or abstraction. In the mathematics classrooms envisioned in Principles and Standards, every student has access to technology to facilitate his or her mathematics learning. Technology also offers options for students with special needs. Some students may benefit from the more constrained and engaging task situations possible with computers. Students with physical challenges can become much more engaged in mathematics using special technologies. Technology cannot replace the mathematics teacher, nor can it be used as a replacement for basic understandings and intuitions. The teacher must make prudent decisions about when and how to use technology and should ensure that the technology is enhancing students' mathematical thinking."
(NCTM, 2013, http://www.nctm.org.)

Acknowledgements

COMMITTEE MEMBERS (2015)
The Mississippi Department of Education gratefully acknowledges the following individuals who provided feedback in developing the 2016 Mississippi College- and Career-Readiness Standards for Mathematics.

Christy Bennett Jennifer Bennett
Suzanne Breazeale
Stephanie Brewer
Shelita Brown, Ph.D.
Libby Cook
Kelli Crain
Marla Davis, Ph.D.
Donna Diaz
Elizabeth Fulmer
Cheryl Heavener
Shauna Hedgepeth
Sidney Margaret Holbert, Ph.D.
Leslie Holloway
Jessica Ivy, Ph.D.
Suzanne Jennings
Carol Ladner
Patricia Lampkin
Joycelyn Lorenzo
Sissy Lynn
Meredith "Paige" Phillips
Amie Powell
Kim Price
Chetonia Pryor
Deia Sanders
Kristen Schrimpshire
Alice Steimle, Ph.D.
Sharon Sutherlin
Jennifer Wilson

DeSoto County School District
Calhoun County School District Neshoba County
Petal Public School District
Mississippi Department of Education
Hinds County School District
Mississippi Department of Education
Mississippi Department of Education
Biloxi School District
Mississippi Department of Education
South Tippah School District
Lamar County School District
Mississippi College
Pearl School District
Mississippi State University
Pascagoula-Gautier School District
Mississippi Department of Education
Humphreys County School District
Gulfport School District
Madison County School District
Ocean Springs School District
Marion County School District
Clinton School District
Coahoma AHS School District
Simpson County School District
Quitman School District
University of Mississippi
Bay-Waveland School District
Rankin County School District

Acknowledgements

COMMITTEE MEMBERS (2013)
The Mississippi Department of Education gratefully acknowledges the following individuals who provided feedback in developing the 2015 Mississippi College- and Career-Readiness Standards for Mathematics.

Lisa Amacker
Richard Baliko
Stephanie Brewer
Angela Cooley
Tammi Crosetti
Marla Davis, Ph.D.
Melinda Gann, Ph.D.
Roy Gill
Trecina Green
David Jay Herbert
Susan Lee, Ed.D.
JoAnn Malone
Jean Massey
Nathan Oakley
Kerri Pippin
Jenny Simmons
Alice Steimle, Ph.D.
LaVerne Ulmer, Ph.D.
Jennifer Wilson

Petal Public School District
Mississippi Department of Education
Petal Public School District
Jones County Junior College
Rankin County School District
Mississippi Department of Education
Mississippi State University
Harrison County Public Schools
Mississippi Department of Education Delta State University
Institutions of Higher Learning Mississippi Department of Education
Mississippi Department of Education
Mississippi Department of Education
Jones County Junior College
Lee County School District
University of Mississippi
Jones County Junior College
Rankin County School District

MISSISSIPPI departuent of EDUCATION

Ensuring a bright future for every child

College- and CareerReadiness Standards for Mathematics Overview

College- and Career-Readiness Standards for Mathematics

For over a decade, research studies of mathematics education in high-performing countries have pointed to the conclusion that the mathematics curriculum in the United States must become substantially more focused and coherent in order to improve mathematics achievement in this country. To deliver on the promise of common standards, the standards must address the problem of a curriculum that is "a mile wide and an inch deep." These Standards are a substantial answer to that challenge. Aiming for clarity and specificity, these Standards endeavor to follow a design that not only stresses conceptual understanding of key ideas, but also by continually returning to organizing principles such as place value or the laws of arithmetic to structure those ideas.

Understanding Mathematics

These Standards define what students should understand and be able to do in their study of mathematics. Asking a student to understand something means asking a teacher to assess whether the student has understood it. But what does mathematical understanding look like? One hallmark of mathematical understanding is the ability to justify, in a way appropriate to the student's mathematical maturity, why a particular mathematical statement is true or where a mathematical rule comes from. There is a world of difference between a student who can summon a mnemonic device to expand a product such as $(a+b)(x+y)$ and a student who can explain where the mnemonic comes from. The student who can explain the rule understands the mathematics, and may have a better chance to succeed at a less familiar task such as expanding $(a+b+c)(x+y)$. Mathematical understanding and procedural skill are equally important, and both are assessable using mathematical tasks of sufficient richness.

The Standards set grade-specific expectations but do not define the intervention methods or materials necessary to support students who are well below or well above grade-level expectations. It is also beyond the scope of the Standards to define the full range of supports appropriate for English language learners and for students with special needs. At the same time, all students must have the opportunity to learn and meet the same high standards if they are to access the knowledge and skills necessary for college and/or careers. The Standards should be read as allowing for the widest possible range of students to participate fully from the outset, along with appropriate accommodations to ensure maximum participation of students with special education needs. For example, for students with reading disabilities the use of Braille, screen reader technology, or other assistive devices should be made available. In addition, while writing, these students should have access to a scribe, computer, or speech-to-text technology in their classroom. In a similar vein, speaking and listening should be interpreted broadly to include sign language. No set of grade-specific standards can fully reflect the great variety in abilities, needs, learning rates, and achievement levels of students in any given classroom. However, the Standards do provide clear signposts along the way to the goal of College- and Career-Readiness for all students.

Standards for Mathematical Practice

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.
3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argumentexplain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.
5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a
website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6. Attend to precision

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.
7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered
$7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+$ $9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3$ (x$y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.
8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Connecting the Standards for Mathematical Practice to the 2016 Mississippi Collegeand Career-Readiness Standards for Mathematics

The Standards for Mathematical Practice describe ways in which developing student practitioners of the discipline of mathematics increasingly ought to engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle and high school years. Designers of curricula, assessments, and professional development should all attend to the need to connect the mathematical practices to the Standards in mathematics instruction.

The Standards are a balanced combination of procedure and understanding. Expectations that begin with the word "understand" are often especially good opportunities to connect the practices to the content. Students who lack understanding of a topic may rely on procedures too heavily. Without a flexible base from which to work, they may be less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a student from engaging in the mathematical practices.

In this respect, those content standards which set an expectation of understanding are potential "points of intersection" between the Standards for Mathematical Content and the Standards for Mathematical Practice. These points of intersection are intended to be weighted toward central and generative concepts in the school mathematics curriculum that most merit the time, resources, innovative energies, and focus necessary to qualitatively improve the curriculum, instruction, assessment, professional development, and student achievement in mathematics.

Modeling (High School Courses only)

Modeling standards are noted throughout the high school courses with an asterisk (*). Modeling links classroom mathematics and statistics to everyday life, work, and decisionmaking. Modeling is the process of choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be modeled using mathematical and statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and comparing predictions with data.

Making mathematical models is a Standard for Mathematical Practice, and specific Modeling standards appear throughout the high school standards. The basic modeling cycle above involves (1) identifying variables in the situation and selecting those that represent essential features, (2) formulating a model by creating and selecting geometric, graphical, tabular, algebraic, or statistical representations that describe relationships between the variables, (3) analyzing and performing operations on these relationships to draw conclusions, (4) interpreting the results of the mathematics in terms of the original situation, (5) validating the conclusions by comparing them with the situation, and then either improving the model or, if it is acceptable, (6) reporting on the conclusions and the reasoning behind them. Choices, assumptions, and approximations are present throughout this cycle.

MISSISSIPPI
DEPARTMENT OF
EDUCATION
Ensuring a bright future for every child

College- and CareerReadiness Standards for Mathematics Scaffolding Document

2016 Mississippi College- and Career-Readiness Standards Scaffolding Document

Purpose

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document is located at http://www.mde.k12.ms.us/ESE/ccr.

Organization of the 2016 Mississippi College- and Career-Standards Scaffolding Document
The 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is divided by grade level. Within each grade level, the Scaffolding Document is separated into the mathematical domains Counting and Cardinality (Grade K), Operations and Algebraic Thinking (Grades K-5); Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5); Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 6-7); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Geometry, and Statistics \& Probability.

Each standard is then broken down into three categories: Prerequisite Knowledge, Conceptual Understanding, and Evidence of Knowledge. The Prerequisite Knowledge column lists the skills that students should have mastered in previous grades in order to work towards mastery of the grade-specific standard. In other words, this column details what a student needs to KNOW before mastering the grade-specific standard. The Conceptual Understanding column explains the deeper understanding of concepts-not actions or skills-that are required for mastery of the grade specific standard. In other words, this column explains what a student needs to UNDERSTAND before mastering the grade-specific standard. The last column, Evidence of Knowledge, explains what student mastery looks like, including what work a student produces to exhibit mastery of the grade-specific standard. In other words, this column describes what a student needs to $D O$ to show mastery of the grade-specific standard.

$\left\lvert\, \begin{aligned} & \text { MISSISSIPPI } \\ & \text { DEPARTMENT OF } \\ & \text { EDUCATION }\end{aligned}\right.$
Ensuring a bright future for every child

College- and CareerReadiness Standards for Mathematics (Grades K-5)

Fluency/Fluently Defined

Throughout the 2016 Mississippi College- and Career-Readiness Standards for Mathematics Grades K-5 standards, the words fluency and fluently will appear in bold, italicized, and underlined font (for example: $\underline{f l u e n t l y}$). With respect to student performance and effective inclass instruction, the expectations for mathematical fluency are explained below:

Fluency is not meant to come at the expense of understanding, but is an outcome of a progression of learning and sufficient thoughtful practice. It is important to provide the conceptual building blocks that develop understanding in tandem with skill along the way to fluency; the roots of this conceptual understanding often extend one or more grades earlier in the standards than the grade when fluency is finally expected.

Wherever the word fluently appears in a MS CCR content standard, the word means quickly and accurately. It is important to understand that this is not explicitly tied to assessment purposes, but means more or less the same as when someone is said to be fluent in a foreign language. To be fluent is to flow: Fluent isn't halting, stumbling, or reversing oneself.

A key aspect of fluency in this sense is that it is not something that happens all at once in a single grade but requires attention to student understanding along the way. It is important to ensure that sufficient practice and extra support are provided at each grade to allow all students to meet the standards that call explicitly for fluency.

Grade 7

In Grade 7, instruction should focus on four critical areas: (1) developing understanding of and applying proportional relationships; (2) developing understanding of operations with rational numbers and working with expressions and linear equations; (3) solving problems involving scale drawings and informal geometric constructions, and working with two- and three-dimensional shapes to solve problems involving area, surface area, and volume; and (4) drawing inferences about populations based on samples. Each critical area is described below.
(1) Students extend their understanding of ratios and develop understanding of proportionality to solve single- and multi-step problems. Students use their understanding of ratios and proportionality to solve a wide variety of percent problems, including those involving discounts, interest, taxes, tips, and percent increase or decrease. Students solve problems about scale drawings by relating corresponding lengths between the objects or by using the fact that relationships of lengths within an object are preserved in similar objects. Students graph proportional relationships and understand the unit rate informally as a measure of the steepness of the related line, called the slope. They distinguish proportional relationships from other relationships.
(2) Students develop a unified understanding of number, recognizing fractions, decimals (that have a finite or a repeating decimal representation), and percents as different representations of rational numbers. Students extend addition, subtraction, multiplication, and division to all rational numbers, maintaining the properties of operations and the relationships between addition and subtraction, and multiplication and division. By applying these properties, and by viewing negative numbers in terms of everyday contexts (e.g., amounts owed or temperatures below zero), students explain and interpret the rules for adding, subtracting, multiplying, and dividing with negative numbers. They use the arithmetic of rational numbers as they formulate expressions and equations in one variable and use these equations to solve problems.
(3) Students continue their work with area from Grade 6, solving problems involving the area and circumference of a circle and surface area of three-dimensional objects. In preparation for work on congruence and similarity in Grade 8 they reason about relationships among two-dimensional figures using scale drawings and informal geometric constructions, and they gain familiarity with the relationships between angles formed by intersecting lines. Students work with three-dimensional figures, relating them to twodimensional figures by examining cross-sections. They solve real-world and mathematical problems involving area, surface area, and volume of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes and right prisms.
(4) Students build on their previous work with single data distributions to compare two data distributions and address questions about differences between populations. They begin informal work with random sampling to generate data sets and learn about the importance of representative samples for drawing inferences.

Grade 7 (continued)

The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5); Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 6-7); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics \& Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically.

Grade 7

Ratios and Proportional Relationships (RP)

Analyze proportional relationships and use them to solve real-world and mathematical problems

7.RP. 1	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction ${ }^{1 / 2 / 1 / 4}$ miles per hour, equivalently 2 miles per hour.
7.RP. 2	Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.
7.RP. 3	Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.
	(NS)
Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers	
7.NS. 1	Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. b. Understand $p+q$ as the number located a distance $\|q\|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. c. Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. d. Apply properties of operations as strategies to add and subtract rational numbers.

Grade 7

7.NS. 2	Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real-world contexts. c. Apply properties of operations as strategies to multiply and divide rational numbers. d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0 s or eventually repeats.
7.NS. 3	Solve real-world and mathematical problems involving the four operations with rational numbers. ${ }^{1}$
Expressions and Equations (EE)	
Use properties of operations to generate equivalent expressions	
7.EE. 1	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
7.EE. 2	Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=1.05 a$ means that "increase by 5\%" is the same as "multiply by 1.05."
Solve real-life and mathematical problems using numerical and algebraic expressions and equations	
7.EE. 3	Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If you want to place a towel bar 9 3/4 inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.
7.EE. 4	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width? b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $\$ 50$ per week plus $\$ 3$ per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.

Grade 7

Geometry (G)

Draw, construct, and describe geometrical figures and describe the relationships between them	
7.G. 1	Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
7.G. 2	Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
7.G. 3	Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.
Solve real-life and mathematical problems involving angle measure, area, surface area, and volume	
7.G. 4	Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
7.G. 5	Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.
7.G.6	Solve real-world and mathematical problems involving area, volume and surface area of twoand three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.
Statistics and Probability (SP)	
Use random sampling to draw inferences about a population	
7.SP. 1	Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.
7.SP. 2	Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.
Draw informal comparative inferences about two populations	
7.SP. 3	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability on either team; on a dot plot, the separation between the two distributions of heights is noticeable.

Grade 7

7.SP. 4	Use measures of center and measures of variability (i.e. inter-quartile range) for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.
nvestigate chance processes and develop, use, and, evaluate probability models	
7.SP. 5	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
7.SP. 6	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
7.SP. 7	Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?
7.SP. 8	Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event. c. Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?

[^0]
Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Acceleration in Middle School

There are some students who are able to move through the mathematics quickly. These students may choose to take high school mathematics beginning in eighth grade or earlier so they can take college-level mathematics in high school. Students who are capable of moving more quickly deserve thoughtful attention, both to ensure that they are challenged and that they are mastering the full range of mathematical content and skills-without omitting critical concepts and topics. Care must be taken to ensure that students master and fully understand all important topics in the mathematics curriculum, and that the continuity of the mathematics learning progression is not disrupted. In particular, the Standards for Mathematical Practice ought to continue to be emphasized in these cases.

To prepare students for high school mathematics in eighth grade, the MDE has developed a well-crafted sequence of compacted courses. The term "compacted" means to compress content, which requires a faster pace to complete, as opposed to skipping content. These compacted courses are designed for districts offering the Traditional Pathway (Algebra I Geometry - Algebra II) high school sequence, and the other for districts using an Integrated Pathway sequence (Integrated Math I - Integrated Math II - Integrated Math III) which is commonly found internationally. A snapshot of the content standards in each Pathway is available on pages 135-136. Both Pathways are based on the idea that content should compact 3 years of content into 2 years, at most. As a result, Grades 7, 8 , and 9 were compacted into Grades 7 and 8 (a $3: 2$ compaction). Whereas, some $8^{\text {th }}$ grade content is addressed in the 7th grade courses, and high school content is addressed in 8th grade.

The Compacted Traditional sequence compacts MS CCRS Grade 7, MS CCRS Grade 8, and high school MS CCRS Algebra I into two years. Upon successful completion of this Pathway, students will be ready for MS CCRS Geometry or MS CCRS Algebra II in high school. The Compacted Integrated sequence compacts MS CCRS Grade 7, MS CCRS Grade 8, and-MS CCRS Integrated Mathematics I into two years. At the end of 8th grade, these students will be ready for MS CCRS Integrated Mathematics II in high school. While the MS CCRS Grades K-7 effectively prepare students for algebra I in 8th grade, some standards from 8th grade have been placed in the Compacted Mathematics Grade 7 course to make the Compacted Mathematics Grade 8 courses more manageable- regardless of the Pathway chosen.

1. Compacted courses should include the same Mississippi College- and CareerReadiness Standards as the non-compacted courses.

It is recommended to compact three years of material into two years, rather than compacting two years into one. The rationale is that mathematical concepts are likely to be omitted when trying to squeeze two years of material into one. This is to be avoided, as the standards have been carefully developed to define clear learning progressions through the major mathematical domains. Moreover, the compacted courses should not sacrifice attention to the Mathematical Practices Standard.

Acceleration in Middle School (continued)

2. Decisions to accelerate students into the Mississippi College- and CareerReadiness Standards for high school mathematics before ninth grade should not be rushed.

Placing students into tracks too early should be avoided at all costs. It is not recommended to compact the standards before grade seven. In this document, compaction begins in seventh grade for both the traditional and integrated (international) pathways.
3. Decisions to accelerate students into high school mathematics before ninth grade should be based on solid evidence of student learning.

Research has shown discrepancies in the placement of students into "advanced" classes by race/ethnicity and socioeconomic background. While such decisions to accelerate are almost always a joint decision between the school and the family, serious efforts must be made to consider solid evidence of student learning in order to avoid unwittingly disadvantaging the opportunities of particular groups of students.
4. A menu of challenging options should be available for students after their third year of mathematics-and all students should be strongly encouraged to take mathematics in all years of high school.

Traditionally, students taking high school mathematics in the eighth grade are expected to take a Pre-Calculus or Algebra III course in their junior years and then Calculus in their senior years. This is a good and worthy goal, but it should not be the only option for students. An array of challenging options will keep mathematics relevant for students, and give them a new set of tools for their futures in college and career.

Secondary Sequence Options

Students will progress according to grade level through the sixth grade. Beginning in the seventh grade, students are given course sequence options based on academic progress, teacher recommendation, and parental consent. Below are suggested secondary course sequence options:

Suggested Secondary Course Sequence Options for Mathematics

| Grade |
| :---: | :---: | :---: | :---: |
| Level | OPTION 1 \quad OPTION 2 \quad OPTION 3

Compacted Mathematics Grade 7

In Compacted Mathematics Grade 7, a one-credit course, instruction should focus on four critical areas from Grade 7: (1) applying proportional relationships; (2) developing understanding of operations with rational numbers and working with expressions and linear equations; (3) solving problems involving scale drawings and informal geometric constructions, and working with two- and three-dimensional shapes to solve problems involving area, surface area, and volume; and (4) drawing inferences about populations based on samples. Each critical area is described below.
(1) Students extend their understanding of ratios and develop understanding of proportionality to solve single- and multi-step problems. Students use their understanding of ratios and proportionality to solve a wide variety of percent problems, including those involving discounts, interest, taxes, tips, and percent increase or decrease. Students solve problems about scale drawings by relating corresponding lengths between the objects or by using the fact that relationships of lengths within an object are preserved in similar objects. Students graph proportional relationships and understand the unit rate informally as a measure of the steepness of the related line, called the slope. They distinguish proportional relationships from other relationships.
(2) Students develop a unified understanding of number, recognizing fractions, decimals (that have a finite or a repeating decimal representation), and percents as different representations of rational numbers. Students extend addition, subtraction, multiplication, and division to all rational numbers, maintaining the properties of operations and the relationships between addition and subtraction, and multiplication and division. By applying these properties, and by viewing negative numbers in terms of everyday contexts (e.g., amounts owed or temperatures below zero), students explain and interpret the rules for adding, subtracting, multiplying, and dividing with negative numbers. They use the arithmetic of rational numbers as they formulate expressions and equations in one variable and use these equations to solve problems.
(3) Students continue their work with area from Grade 6, solving problems involving the area and circumference of a circle and surface area of three-dimensional objects. In preparation for work on congruence and similarity in Grade 8 they reason about relationships among two-dimensional figures using scale drawings and informal geometric constructions, and they gain familiarity with the relationships between angles formed by intersecting lines. Students work with three-dimensional figures, relating them to twodimensional figures by examining cross-sections. They solve real-world problems involving area, surface area, and volume of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes and right prisms.
(4) Students build on their previous work with single data distributions to compare two data distributions and address questions about differences between populations. They begin informal work with random sampling to generate data sets and learn about the importance of representative samples for drawing inferences.

Compacted Mathematics Grade 7 (comininec)

In Compacted Mathematics Grade 7, instruction should focus on three critical areas from Grade 8: (1) formulating and reasoning about expressions and equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems of linear equations; (2) grasping the concept of a function and using functions to describe quantitative relationships; (3) analyzing two- and three-dimensional space and figures using distance, angle, similarity, and congruence. Each critical area is described below.
(1) Students use linear equations and systems of linear equations to represent, analyze, and solve a variety of problems. Students recognize equations for proportions ($y / x=m$ or $y=m x)$ as special linear equations $(y=m x+b)$, understanding that the constant of proportionality (m) is the slope, and the graphs are lines through the origin. They understand that the slope (m) of a line is a constant rate of change, so that if the input or x-coordinate changes by an amount A, the output or y-coordinate changes by the amount $m \cdot A$. Students also use a linear equation to describe the association between two quantities in bivariate data (such as arm span vs. height for students in a classroom). At this grade, fitting the model, and assessing its fit to the data are done informally. Interpreting the model in the context of the data requires students to express a relationship between the two quantities in question and to interpret components of the relationship (such as slope and y-intercept) in terms of the situation.

Students strategically choose and efficiently implement procedures to solve linear equations in one variable, understanding that when they use the properties of equality and the concept of logical equivalence, they maintain the solutions of the original equation. Students solve systems of two linear equations in two variables and relate the systems to pairs of lines in the plane; these intersect, are parallel, or are the same line. Students use linear equations, systems of linear equations, linear functions, and their understanding of slope of a line to analyze situations and solve problems.
(2) Students grasp the concept of a function as a rule that assigns to each input exactly one output. They understand that functions describe situations where one quantity determines another. They can translate among representations and partial representations of functions (noting that tabular and graphical representations may be partial representations), and they describe how aspects of the function are reflected in the different representations.
(3) Students use ideas about distance and angles, how they behave under translations, rotations, reflections, and dilations, and ideas about congruence and similarity to describe and analyze two-dimensional figures and to solve problems. Students show that the sum of the angles in a triangle is the angle formed by a straight line, and that various configurations of lines give rise to similar triangles because of the angles created when a transversal cuts parallel lines.

Compacted Mathematics Grade 7 (continued)

The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5); Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 6-7); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics \& Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically.

Compacted Mathematics Grade 7

Ratios and Proportional Relationships

Analyze proportional relationships and use them to solve real-world and mathematical problems

7.RP. 1	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction ${ }^{1 / 2 / 1 / 4}$ miles per hour, equivalently 2 miles per hour.
7.RP. 2	Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.
7.RP. 3	Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.
	The Number System
Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers	
7.NS. 1	Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. b. Understand $p+q$ as the number located a distance $\|q\|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. c. Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. d. Apply properties of operations as strategies to add and subtract rational numbers.

Compacted Mathematics Grade 7

7.NS. 2	Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real-world contexts. c. Apply properties of operations as strategies to multiply and divide rational numbers. d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0 s or eventually repeats.
7.NS. 3	Solve real-world and mathematical problems involving the four operations with rational numbers. ${ }^{1}$
Know that there are numbers that are not rational, and approximate them by rational numbers	
8.NS. 1	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
8.NS. 2	Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5, and explain how to continue on to get better approximations.
Expressions and Equations	
Use properties of operations to generate equivalent expressions	
7.EE. 1	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
7.EE. 2	Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a $+0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05."
Solve real-life and mathematical problems using numerical and algebraic expressions and equations	
7.EE. 3	Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If you want to place a towel bar $93 / 4$ inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.

Compacted Mathematics Grade 7

7.EE. 4	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width? b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $\$ 50$ per week plus $\$ 3$ per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.
Work with radicals and integer exponents	
8.EE. 1	Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{-5}=3^{-3}=1 / 3^{3}=1 / 27$.
8.EE. 2	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.
8.EE. 3	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3×10^{8} and the population of the world as 7×10^{9}, and determine that the world population is more than 20 times larger.
8.EE. 4	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.
Understand the connections between proportional relationships, lines, and linear equations	
8.EE. 5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
8.EE. 6	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.

Compacted Mathematics Grade 7

Analyze and solve linear equations and pairs of simultaneous linear equations	
8.EE. 7	Solve linear equations in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers). b. Solve linear equations and inequalities with rational number coefficients, including those whose solutions require expanding expressions using the distributive property and collecting like terms.
Geometry	
Draw, construct, and describe geometrical figures and describe the relationships between them	
7.G. 1	Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
7.G. 2	Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
7.G. 3	Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.
Solve real-life and mathematical problems involving angle measure, area, surface area, and volume	
7.G. 4	Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
7.G. 5	Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.
7.G. 6	Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.
Understand congruence and similarity using physical models, transparencies, or geometry software	
8.G. 1	Verify experimentally the properties of rotations, reflections, and translations a. Lines are taken to lines, and line segments to line segments of the same length. b. Angles are taken to angles of the same measure. c. Parallel lines are taken to parallel lines.

Compacted Mathematics Grade 7

8.G.2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.				
8.G.3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.				
8.G.4	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.				
8.G.5	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.				
Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres		$	$	8.G.9	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real- world and mathematical problems.
:---	:---				
Statistics and Probability					

Compacted Mathematics Grade 7

Investigate chance processes and develop, use, and, evaluate probability models	
7.SP. 5	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
7.SP. 6	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
7.SP. 7	Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?
7.SP. 8	Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event. c. Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?

[^1]
Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

[^0]: ${ }^{1}$ Computations with rational numbers extend the rules for manipulating fractions to complex fractions.

[^1]: ${ }^{1}$ Computations with rational numbers extend the rules for manipulating fractions to complex fractions.

