

Ensuring a bright future for every child

2016 Mississippi
 College- and CareerReadiness Standards for Mathematics

Effective Date: 2016-2017 School Year

MISSISSIPPI DEPARTMENT OF EDUCATION
Ensuring a bright future for every child

2016 Mississippi College- and Career-Readiness Standards for Mathematics

Carey M. Wright, Ed.D., State Superintendent of Education
Kim S. Benton, Ed.D., Chief Academic Officer Jean Massey, Executive Director, Office of Secondary Education

Nathan Oakley, Ph.D., Executive Director, Office of Elementary Education and Reading Trecina Green, Executive Director, Office of Professional Development Marla Davis, Ph.D., NBCT, Bureau Director, Office of Secondary Education

Mississippi Department of Education Post Office Box 771 Jackson, Mississippi 39205-0771

Office of Elementary Education and Reading Office of Secondary Education

601-359-2586 www.mde.k12.ms.us/ESE

The Mississippi State Board of Education, the Mississippi Department of Education, the Mississippi School for the Arts, the Mississippi School for the Blind, the Mississippi School for the Deaf, and the Mississippi School for Mathematics and Science do not discriminate on the basis of race, sex, color, religion, national origin, age, or disability in the provision of educational programs and services or employment opportunities and benefits. The following office has been designated to handle inquiries and complaints regarding the nondiscrimination policies of the above mentioned entities:

Director, Office of Human Resources
Mississippi Department of Education
Introduction 5
Acknowledgements Error! Bookmark not defined.
College- and Career-Readiness Standards for Mathematics Overview 9
College- and Career-Readiness Standards for Mathematics Scaffolding Document 16
College- and Career-Readiness Standards for Mathematics (Grades K-5) 18
Fluency/Fluently Defined 19
Grade K 20
Grade 1 25
Grade 2 31
Grade 3 36
Grade 4 43
Grade 5 51
College- and Career-Readiness Standards for Mathematics (Grades 6-8) 58
Grade 6 59
Grade 7 67
Grade 8 74
Acceleration in Middle School 81
Secondary Sequence Options 83
High School Conceptual Categories 84
Compacted Mathematics Grade 7 94
Compacted Mathematics Grade 8 (with Algebra I) 104
Compacted Mathematics Grade 8 (with Integrated Math I) 115
College- and Career-Readiness Standards for Mathematics (Grades 9-12) 126
Secondary Sequence Options 127
High School Overview 128
High School Conceptual Categories 129
High School—Algebra I 140
High School-Geometry 148
High School-Algebra II 155
High School-Integrated Mathematics I 165
High School-Integrated Mathematics II 173
High School-Integrated Mathematics III 182
High School—Advanced Mathematics Plus 191
High School—Algebra III 199
High School-Calculus 204
High School—SREB Math Ready 208
High School—Advanced Placement (AP) Calculus 212
High School—Advanced Placement (AP) Statistics 216
Compensatory Mathematics Course Description 219
Foundations of Algebra Course 220
Glossary 225
Tables 233

Introduction

Mission Statement

The Mississippi Department of Education is dedicated to student success including the improvement of student achievement in mathematics in order to produce citizens who are capable of making complex decisions, solving complex problems, and communicating fluently in a technological society. The 2016 Mississippi College- and Career-Readiness Standards for Mathematics ("The Standards") provide a consistent, clear understanding of what students are expected to know and be able to do by the end of each grade level and course. The standards are designed to be robust and relevant to the real world, reflecting the knowledge and skills that students need for success in college and careers and to compete in the global economy.

Purpose

In an effort to closely align instruction for students who are progressing toward postsecondary study and the workforce, the 2016 Mississippi College- and Career-Readiness Standards for Mathematics include grade- and course-specific standards for K-12 mathematics.

The primary purpose of this document is to provide a basis for curriculum development for Grades K-12 mathematics teachers, outlining what students should know and be able to do by the end of each grade level and course. Courses for grades K-12 are based on the Mississippi College- and Career-Readiness Standards (MS CCRS) for Mathematics. Mississippi-specific courses that were revised to align with the (MS CCRS) for Mathematics include Pre-Calculus (renamed Algebra III) and Calculus.

The Southern Regional Education Board (SREB) Math Ready course is included as a transition to college mathematics courses.

The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5); Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 6-7); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics \& Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically.

The required year for the 2016 Mississippi College- and Career-Readiness Standards for Mathematics is school year 2016-2017.

Technology

The Mississippi Department of Education (MDE) strongly encourages the use of technology in all mathematics classrooms. Technology is essential in teaching and learning mathematics; it influences the mathematics that is taught and enhances students' learning.

The appropriate use of instructional technology is integrated throughout the 2016 Mississippi College- and Career-Readiness Standards for Mathematics. Teaching strategies at each grade level and in every secondary course incorporate technology in the form of calculators, software, or on-line internet resources. The graphing calculator is an integral part of mathematics courses beginning with Grade 6.

The MDE believes strongly in the Principles and Standards for School Mathematics Technology Principle of the National Council for Teachers of Mathematics (NCTM):
"Calculators and computers are reshaping the mathematical landscape, and school mathematics should reflect those changes. Students can learn more mathematics more deeply with the appropriate and responsible use of technology. They can make and test conjectures. They can work at higher levels of generalization or abstraction. In the mathematics classrooms envisioned in Principles and Standards, every student has access to technology to facilitate his or her mathematics learning. Technology also offers options for students with special needs. Some students may benefit from the more constrained and engaging task situations possible with computers. Students with physical challenges can become much more engaged in mathematics using special technologies. Technology cannot replace the mathematics teacher, nor can it be used as a replacement for basic understandings and intuitions. The teacher must make prudent decisions about when and how to use technology and should ensure that the technology is enhancing students' mathematical thinking."
(NCTM, 2013, http://www.nctm.org.)

Acknowledgements

COMMITTEE MEMBERS (2015)
The Mississippi Department of Education gratefully acknowledges the following individuals who provided feedback in developing the 2016 Mississippi College- and Career-Readiness Standards for Mathematics.

Christy Bennett Jennifer Bennett
Suzanne Breazeale
Stephanie Brewer
Shelita Brown, Ph.D.
Libby Cook
Kelli Crain
Marla Davis, Ph.D.
Donna Diaz
Elizabeth Fulmer
Cheryl Heavener
Shauna Hedgepeth
Sidney Margaret Holbert, Ph.D.
Leslie Holloway
Jessica Ivy, Ph.D.
Suzanne Jennings
Carol Ladner
Patricia Lampkin
Joycelyn Lorenzo
Sissy Lynn
Meredith "Paige" Phillips
Amie Powell
Kim Price
Chetonia Pryor
Deia Sanders
Kristen Schrimpshire
Alice Steimle, Ph.D.
Sharon Sutherlin
Jennifer Wilson

DeSoto County School District
Calhoun County School District Neshoba County
Petal Public School District
Mississippi Department of Education
Hinds County School District
Mississippi Department of Education
Mississippi Department of Education
Biloxi School District
Mississippi Department of Education
South Tippah School District
Lamar County School District
Mississippi College
Pearl School District
Mississippi State University
Pascagoula-Gautier School District
Mississippi Department of Education
Humphreys County School District
Gulfport School District
Madison County School District
Ocean Springs School District
Marion County School District
Clinton School District
Coahoma AHS School District
Simpson County School District
Quitman School District
University of Mississippi
Bay-Waveland School District
Rankin County School District

Acknowledgements

COMMITTEE MEMBERS (2013)
The Mississippi Department of Education gratefully acknowledges the following individuals who provided feedback in developing the 2015 Mississippi College- and Career-Readiness Standards for Mathematics.

Lisa Amacker
Richard Baliko
Stephanie Brewer
Angela Cooley
Tammi Crosetti
Marla Davis, Ph.D.
Melinda Gann, Ph.D.
Roy Gill
Trecina Green
David Jay Herbert
Susan Lee, Ed.D.
JoAnn Malone
Jean Massey
Nathan Oakley
Kerri Pippin
Jenny Simmons
Alice Steimle, Ph.D.
LaVerne Ulmer, Ph.D.
Jennifer Wilson

Petal Public School District
Mississippi Department of Education
Petal Public School District
Jones County Junior College
Rankin County School District
Mississippi Department of Education
Mississippi State University
Harrison County Public Schools
Mississippi Department of Education Delta State University
Institutions of Higher Learning Mississippi Department of Education
Mississippi Department of Education
Mississippi Department of Education
Jones County Junior College
Lee County School District
University of Mississippi
Jones County Junior College
Rankin County School District

MISSISSIPPI departuent of EDUCATION

Ensuring a bright future for every child

College- and CareerReadiness Standards for Mathematics Overview

College- and Career-Readiness Standards for Mathematics

For over a decade, research studies of mathematics education in high-performing countries have pointed to the conclusion that the mathematics curriculum in the United States must become substantially more focused and coherent in order to improve mathematics achievement in this country. To deliver on the promise of common standards, the standards must address the problem of a curriculum that is "a mile wide and an inch deep." These Standards are a substantial answer to that challenge. Aiming for clarity and specificity, these Standards endeavor to follow a design that not only stresses conceptual understanding of key ideas, but also by continually returning to organizing principles such as place value or the laws of arithmetic to structure those ideas.

Understanding Mathematics

These Standards define what students should understand and be able to do in their study of mathematics. Asking a student to understand something means asking a teacher to assess whether the student has understood it. But what does mathematical understanding look like? One hallmark of mathematical understanding is the ability to justify, in a way appropriate to the student's mathematical maturity, why a particular mathematical statement is true or where a mathematical rule comes from. There is a world of difference between a student who can summon a mnemonic device to expand a product such as $(a+b)(x+y)$ and a student who can explain where the mnemonic comes from. The student who can explain the rule understands the mathematics, and may have a better chance to succeed at a less familiar task such as expanding $(a+b+c)(x+y)$. Mathematical understanding and procedural skill are equally important, and both are assessable using mathematical tasks of sufficient richness.

The Standards set grade-specific expectations but do not define the intervention methods or materials necessary to support students who are well below or well above grade-level expectations. It is also beyond the scope of the Standards to define the full range of supports appropriate for English language learners and for students with special needs. At the same time, all students must have the opportunity to learn and meet the same high standards if they are to access the knowledge and skills necessary for college and/or careers. The Standards should be read as allowing for the widest possible range of students to participate fully from the outset, along with appropriate accommodations to ensure maximum participation of students with special education needs. For example, for students with reading disabilities the use of Braille, screen reader technology, or other assistive devices should be made available. In addition, while writing, these students should have access to a scribe, computer, or speech-to-text technology in their classroom. In a similar vein, speaking and listening should be interpreted broadly to include sign language. No set of grade-specific standards can fully reflect the great variety in abilities, needs, learning rates, and achievement levels of students in any given classroom. However, the Standards do provide clear signposts along the way to the goal of College- and Career-Readiness for all students.

Standards for Mathematical Practice

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.
3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argumentexplain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.
5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a
website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6. Attend to precision

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.
7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered
$7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+$ $9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3$ (x$y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.
8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Connecting the Standards for Mathematical Practice to the 2016 Mississippi Collegeand Career-Readiness Standards for Mathematics

The Standards for Mathematical Practice describe ways in which developing student practitioners of the discipline of mathematics increasingly ought to engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle and high school years. Designers of curricula, assessments, and professional development should all attend to the need to connect the mathematical practices to the Standards in mathematics instruction.

The Standards are a balanced combination of procedure and understanding. Expectations that begin with the word "understand" are often especially good opportunities to connect the practices to the content. Students who lack understanding of a topic may rely on procedures too heavily. Without a flexible base from which to work, they may be less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a student from engaging in the mathematical practices.

In this respect, those content standards which set an expectation of understanding are potential "points of intersection" between the Standards for Mathematical Content and the Standards for Mathematical Practice. These points of intersection are intended to be weighted toward central and generative concepts in the school mathematics curriculum that most merit the time, resources, innovative energies, and focus necessary to qualitatively improve the curriculum, instruction, assessment, professional development, and student achievement in mathematics.

Modeling (High School Courses only)

Modeling standards are noted throughout the high school courses with an asterisk (*). Modeling links classroom mathematics and statistics to everyday life, work, and decisionmaking. Modeling is the process of choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be modeled using mathematical and statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and comparing predictions with data.

Making mathematical models is a Standard for Mathematical Practice, and specific Modeling standards appear throughout the high school standards. The basic modeling cycle above involves (1) identifying variables in the situation and selecting those that represent essential features, (2) formulating a model by creating and selecting geometric, graphical, tabular, algebraic, or statistical representations that describe relationships between the variables, (3) analyzing and performing operations on these relationships to draw conclusions, (4) interpreting the results of the mathematics in terms of the original situation, (5) validating the conclusions by comparing them with the situation, and then either improving the model or, if it is acceptable, (6) reporting on the conclusions and the reasoning behind them. Choices, assumptions, and approximations are present throughout this cycle.

MISSISSIPPI
DEPARTMENT OF
EDUCATION
Ensuring a bright future for every child

College- and CareerReadiness Standards for Mathematics Scaffolding Document

2016 Mississippi College- and Career-Readiness Standards Scaffolding Document

Purpose

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document is located at http://www.mde.k12.ms.us/ESE/ccr.

Organization of the 2016 Mississippi College- and Career-Standards Scaffolding Document
The 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is divided by grade level. Within each grade level, the Scaffolding Document is separated into the mathematical domains Counting and Cardinality (Grade K), Operations and Algebraic Thinking (Grades K-5); Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5); Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 6-7); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Geometry, and Statistics \& Probability.

Each standard is then broken down into three categories: Prerequisite Knowledge, Conceptual Understanding, and Evidence of Knowledge. The Prerequisite Knowledge column lists the skills that students should have mastered in previous grades in order to work towards mastery of the grade-specific standard. In other words, this column details what a student needs to KNOW before mastering the grade-specific standard. The Conceptual Understanding column explains the deeper understanding of concepts-not actions or skills-that are required for mastery of the grade specific standard. In other words, this column explains what a student needs to UNDERSTAND before mastering the grade-specific standard. The last column, Evidence of Knowledge, explains what student mastery looks like, including what work a student produces to exhibit mastery of the grade-specific standard. In other words, this column describes what a student needs to $D O$ to show mastery of the grade-specific standard.

$\left\lvert\, \begin{aligned} & \text { MISSISSIPPI } \\ & \text { DEPARTMENT OF } \\ & \text { EDUCATION }\end{aligned}\right.$
Ensuring a bright future for every child

College- and CareerReadiness Standards for Mathematics (Grades K-5)

Fluency/Fluently Defined

Throughout the 2016 Mississippi College- and Career-Readiness Standards for Mathematics Grades K-5 standards, the words fluency and fluently will appear in bold, italicized, and underlined font (for example: $\underline{f l u e n t l y}$). With respect to student performance and effective inclass instruction, the expectations for mathematical fluency are explained below:

Fluency is not meant to come at the expense of understanding, but is an outcome of a progression of learning and sufficient thoughtful practice. It is important to provide the conceptual building blocks that develop understanding in tandem with skill along the way to fluency; the roots of this conceptual understanding often extend one or more grades earlier in the standards than the grade when fluency is finally expected.

Wherever the word fluently appears in a MS CCR content standard, the word means quickly and accurately. It is important to understand that this is not explicitly tied to assessment purposes, but means more or less the same as when someone is said to be fluent in a foreign language. To be fluent is to flow: Fluent isn't halting, stumbling, or reversing oneself.

A key aspect of fluency in this sense is that it is not something that happens all at once in a single grade but requires attention to student understanding along the way. It is important to ensure that sufficient practice and extra support are provided at each grade to allow all students to meet the standards that call explicitly for fluency.

MISSISSIPPI DEPARTMENT OF
 EDUCATION

Ensuring a bright future for every child

College- and Career-Readiness Standards for Mathematics (Grades 9-12)

Secondary Sequence Options

Students will progress according to grade level through the sixth grade. Beginning in the seventh grade, students are given course sequence options based on academic progress, teacher recommendation, and parental consent. Below are suggested secondary course sequence options:

Suggested Secondary Course Sequence Options for Mathematics

Grade Level	OPTION 1	OPTION 2	OPTION 3
7	Grade 7	Compacted Grade 7	Compacted Grade 7
8	Grade 8	Compacted Grade 8 (with Algebra I) or Compacted Grade 8 (with Integrated Math I)	Compacted Grade 8 (with Algebra I) or Compacted Grade 8 (with Integrated Math I)
9	Algebra I or Integrated Math I	Geometry or Integrated Math II	Algebra II or Integrated Math II
10	Geometry or Integrated Math II	Algebra II or Integrated Math III	Geometry or Integrated Math III
11	Algebra II or Integrated Math III	Algebra III, Advanced Mathematics Plus, Calculus, AP Calculus, AP Statistics, Dual Credit/Dual Enrollment or SREB Math Ready Course	Algebra III, Advanced Mathematics Plus, Calculus, AP Calculus, AP Statistics, Dual Credit/Dual Enrollment or SREB Math Ready Course
12	Algebra III, Advanced Mathematics Plus, Calculus, AP Calculus, AP Statistics, Dual Credit/Dual Enrollment or SREB Math Ready Course	Algebra III, Advanced Mathematics Plus, Calculus, AP Calculus, AP Statistics, Dual Credit/Dual Enrollment or SREB Math Ready Course	Algebra III, Advanced Mathematics Plus, Calculus, AP Calculus, AP Statistics, Dual Credit/Dual Enrollment or SREB Math Ready Course

High School Overview

The high school standards specify the mathematics that all students should study in order to be college and career ready. Additional mathematics that students might learn in order to take advanced courses are included in the Advanced Mathematics Plus and Algebra III courses. The high school standards are listed in conceptual categories:

- Number and Quantity
- Algebra
- Functions
- Modeling
- Geometry
- Statistics and Probability

Conceptual categories portray a coherent view of high school mathematics; a student's work with functions, for example, crosses a number of traditional course boundaries, potentially up through and including calculus.

Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by an asterisk (*). The asterisk (*) symbol sometimes appears on the heading for a group of standards; in that case, it should be understood to apply to all standards in that group.

High School Conceptual Categories

The high school standards specify the mathematics that all students should study in order to be college and career ready. Additional mathematics that students might learn in order to take advanced courses are included in the Advanced Mathematics Plus and Algebra III courses.

The high school standards are listed in conceptual categories:

- Number and Quantity
- Algebra
- Functions
- Modeling
- Geometry
- Statistics and Probability

Conceptual categories portray a coherent view of high school mathematics; a student's work with functions, for example, crosses a number of traditional course boundaries, potentially up through and including calculus.

Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by an asterisk (*). The asterisk (*) symbol sometimes appears on the heading for a group of standards; in that case, it should be understood to apply to all standards in that group.

High School—Number and Quantity Conceptual Category

Numbers and Number Systems. During the years from kindergarten to eighth grade, students must repeatedly extend their conception of number. At first, "number" means "counting number": 1, 2, 3... Soon after that, 0 is used to represent "none" and the whole numbers are formed by the counting numbers together with zero. The next extension is fractions. At first, fractions are barely numbers and tied strongly to pictorial representations. Yet by the time students understand division of fractions, they have a strong concept of fractions as numbers and have connected them, via their decimal representations, with the base-ten system used to represent the whole numbers. During middle school, fractions are augmented by negative fractions to form the rational numbers. In Grade 8, students extend this system once more, augmenting the rational numbers with the irrational numbers to form the real numbers. In high school, students will be exposed to yet another extension of number, when the real numbers are augmented by the imaginary numbers to form the complex numbers.

With each extension of number, the meanings of addition, subtraction, multiplication, and division are extended. In each new number system-integers, rational numbers, real numbers, and complex numbers-the four operations stay the same in two important ways: They have the commutative, associative, and distributive properties and their new meanings are consistent with their previous meanings.

Extending the properties of whole-number exponents leads to new and productive notation. For example, properties of whole-number exponents suggest that $\left(5^{1 / 3}\right)^{3}$ should be $5^{(1 / 3) 3}=5^{1}$ $=5$ and that $5^{1 / 3}$ should be the cube root of 5 .

Calculators, spreadsheets, and computer algebra systems can provide ways for students to become better acquainted with these new number systems and their notation. They can be used to generate data for numerical experiments, to help understand the workings of matrix, vector, and complex number algebra, and to experiment with non-integer exponents.

Quantities. In real world problems, the answers are usually not numbers but quantities: numbers with units, which involves measurement. In their work in measurement up through Grade 8 , students primarily measure commonly used attributes such as length, area, and volume. In high school, students encounter a wider variety of units in modeling, e.g., acceleration, currency conversions, derived quantities such as person-hours and heating degree days, social science rates such as per-capita income, and rates in everyday life such as points scored per game or batting averages. They also encounter novel situations in which they themselves must conceive the attributes of interest. For example, to find a good measure of overall highway safety, they might propose measures such as fatalities per year, fatalities per year per driver, or fatalities per vehicle-mile traveled. Such a conceptual process is sometimes called quantification. Quantification is important for science, as when surface area suddenly "stands out" as an important variable in evaporation. Quantification is also important for companies, which must conceptualize relevant attributes and create or choose suitable measures for them.

High School-Algebra Conceptual Category

Expressions. An expression is a record of a computation with numbers, symbols that represent numbers, arithmetic operations, exponentiation, and, at more advanced levels, the operation of evaluating a function. Conventions about the use of parentheses and the order of operations assure that each expression is unambiguous. Creating an expression that describes a computation involving a general quantity requires the ability to express the computation in general terms, abstracting from specific instances.

Reading an expression with comprehension involves analysis of its underlying structure. This may suggest a different but equivalent way of writing the expression that exhibits some different aspect of its meaning. For example, $p+0.05 p$ can be interpreted as the addition of a 5% tax to a price p. Rewriting $p+0.05 p$ as $1.05 p$ shows that adding a tax is the same as multiplying the price by a constant factor.

Algebraic manipulations are governed by the properties of operations and exponents, and the conventions of algebraic notation. At times, an expression is the result of applying operations to simpler expressions. For example, $p+0.05 p$ is the sum of the simpler expressions p and $0.05 p$. Viewing an expression as the result of operation on simpler expressions can sometimes clarify its underlying structure.

A spreadsheet or a computer algebra system (CAS) can be used to experiment with algebraic expressions, perform complicated algebraic manipulations, and understand how algebraic manipulations behave.

Equations and inequalities. An equation is a statement of equality between two expressions, often viewed as a question asking for which values of the variables the expressions on either side are in fact equal. These values are the solutions to the equation. An identity, in contrast, is true for all values of the variables; identities are often developed by rewriting an expression in an equivalent form.

The solutions of an equation in one variable form a set of numbers; the solutions of an equation in two variables form a set of ordered pairs of numbers, which can be plotted in the coordinate plane. Two or more equations and/or inequalities form a system. A solution for such a system must satisfy every equation and inequality in the system.

An equation can often be solved by successively deducing from it one or more simpler equations. For example, one can add the same constant to both sides without changing the solutions, but squaring both sides might lead to extraneous solutions. Strategic competence in solving includes looking ahead for productive manipulations and anticipating the nature and number of solutions.

Some equations have no solutions in a given number system, but have a solution in a larger system. For example, the solution of $x+1=0$ is an integer, not a whole number; the solution of $2 x+1=0$ is a rational number, not an integer; the solutions of $x^{2}-2=0$ are real numbers, not rational numbers; and the solutions of $x^{2}+2=0$ are complex numbers, not real numbers.

High School—Algebra Conceptual Category (continued)

The same solution techniques used to solve equations can be used to rearrange formulas. For example, the formula for the area of a trapezoid, $A=\left(\left(b_{1}+b_{2}\right) / 2\right) h$, can be solved for h using the same deductive process.

Inequalities can be solved by reasoning about the properties of inequality. Many, but not all, of the properties of equality continue to hold for inequalities and can be useful in solving them.

Connections to Functions and Modeling. Expressions can define functions, and equivalent expressions define the same function. Asking when two functions have the same value for the same input leads to an equation; graphing the two functions allows for finding approximate solutions of the equation. Converting a verbal description to an equation, inequality, or system of these is an essential skill in modeling.

High School—Functions Conceptual Category

Functions describe situations where one quantity determines another. For example, the return on $\$ 10,000$ invested at an annualized percentage rate of 4.25% is a function of the length of time the money is invested. Because we continually make theories about dependencies between quantities in nature and society, functions are important tools in the construction of mathematical models.

In school mathematics, functions usually have numerical inputs and outputs and are often defined by an algebraic expression. For example, the time in hours it takes for a car to drive 100 miles is a function of the car's speed in miles per hour, v; the rule $T(v)=100 / v$ expresses this relationship algebraically and defines a function whose name is T.

The set of inputs to a function is called its domain. We often infer the domain to be all inputs for which the expression defining a function has a value, or for which the function makes sense in a given context.

A function can be described in various ways, such as by a graph (e.g., the trace of a seismograph); by a verbal rule, as in, "I'll give you a state, you give me the capital city;" by an algebraic expression like $f(x)=a+b x$; or by a recursive rule. The graph of a function is often a useful way of visualizing the relationship of the function models, and manipulating a mathematical expression for a function can throw light on the function's properties.

Functions presented as expressions can model many important phenomena. Two important families of functions characterized by laws of growth are linear functions, which grow at a constant rate, and exponential functions, which grow at a constant percent rate. Linear functions with a constant term of zero describe proportional relationships.

A graphing utility or a computer algebra system can be used to experiment with properties of these functions and their graphs and to build computational models of functions, including recursively defined functions.

Connections to Expressions, Equations, Modeling, and Coordinates. Determining an output value for a particular input involves evaluating an expression; finding inputs that yield a given output involves solving an equation. Questions about when two functions have the same value for the same input lead to equations, whose solutions can be visualized from the intersection of their graphs. Because functions describe relationships between quantities, they are frequently used in modeling. Sometimes functions are defined by a recursive process, which can be displayed effectively using a spreadsheet or other technology.

High School—Modeling Conceptual Category

Modeling links classroom mathematics and statistics to everyday life, work, and decisionmaking. Modeling is the process of choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be modeled using mathematical and statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and comparing predictions with data.

A model can be very simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape to describe a physical object like a coin. Even such simple models involve making choices. It is up to us whether to model a coin as a threedimensional cylinder, or whether a two-dimensional disk works well enough for our purposes. Other situations-modeling a delivery route, a production schedule, or a comparison of loan amortizations-need more elaborate models that use other tools from the mathematical sciences. Real-world situations are not organized and labeled for analysis; formulating tractable models, representing such models, and analyzing them is appropriately a creative process. Like every such process, this depends on acquired expertise as well as creativity.

Some examples of such situations might include:

- Estimating how much water and food is needed for emergency relief in a devastated city of 3 million people, and how it might be distributed.
- Planning a table tennis tournament for 7 players at a club with 4 tables, where each player plays against each other player.
- Designing the layout of the stalls in a school fair so as to raise as much money as possible.
- Analyzing stopping distance for a car.
- Modeling savings account balance, bacterial colony growth, or investment growth.
- Engaging in critical path analysis, e.g., applied to turnaround of an aircraft at an airport.
- Analyzing risk in situations such as extreme sports, pandemics, and terrorism.
- Relating population statistics to individual predictions.

In situations like these, the models devised depend on a number of factors: How precise an answer do we want or need? What aspects of the situation do we most need to understand, control, or optimize? What resources of time and tools do we have? The range of models that we can create and analyze is also constrained by the limitations of our mathematical, statistical, and technical skills, and our ability to recognize significant variables and relationships among them. Diagrams of various kinds, spreadsheets and

High School—Modeling Conceptual Category (continued)

other technology, and algebra are powerful tools for understanding and solving problems drawn from different types of real-world situations.

One of the insights provided by mathematical modeling is that essentially the same mathematical or statistical structure can sometimes model seemingly different situations. Models can also shed light on the mathematical structures themselves, for example, as when a model of bacterial growth makes more vivid the explosive growth of the exponential function.

The basic modeling cycle is summarized in the diagram. It involves (1) identifying variables in the situation and selecting those that represent essential features, (2) formulating a model by creating and selecting geometric, graphical, tabular, algebraic, or statistical representations that describe relationships between the variables, (3) analyzing and performing operations on these relationships to draw conclusions, (4) interpreting the results of the mathematics in terms of the original situation, (5) validating the conclusions by comparing them with the situation, and then either improving the model or, if it is acceptable, (6) reporting on the conclusions and the reasoning behind them. Choices, assumptions, and approximations are present throughout this cycle.

In descriptive modeling, a model simply describes the phenomena or summarizes them in a compact form. Graphs of observations are a familiar descriptive model-for example, graphs of global temperature and atmospheric CO_{2} over time.

Analytic modeling seeks to explain data on the basis of deeper theoretical ideas, albeit with parameters that are empirically based; for example, exponential growth of bacterial colonies (until cut-off mechanisms such as pollution or starvation intervene) follows from a constant reproduction rate. Functions are an important tool for analyzing such problems.

Graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry software are powerful tools that can be used to model purely mathematical phenomena (e.g., the behavior of polynomials) as well as physical phenomena.

Modeling Standards. Modeling is best interpreted not as a collection of isolated topics but rather in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by an asterisk (*).

High School-Geometry Conceptual Category

An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts-interpreting a schematic drawing, estimating the amount of wood needed to frame a sloping roof, rendering computer graphics, or designing a sewing pattern for the most efficient use of material.

Although there are many types of geometry, school mathematics is devoted primarily to plane Euclidean geometry, studied both synthetically (without coordinates) and analytically (with coordinates). Euclidean geometry is characterized most importantly by the Parallel Postulate that through a point not on a given line there is exactly one parallel line. (Spherical geometry, in contrast, has no parallel lines.)

During high school, students begin to formalize their geometry experiences from elementary and middle school, using more precise definitions and developing careful proofs. Later in college some students develop Euclidean and other geometries carefully from a small set of axioms.

The concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric transformation. Fundamental are the rigid motions: translations, rotations, reflections, and combinations of these, all of which are here assumed to preserve distance and angles (and therefore shapes generally). Reflections and rotations each explain a particular type of symmetry, and the symmetries of an object offer insight into its attributes-as when the reflective symmetry of an isosceles triangle assures that its base angles are congruent.

In the approach taken here, two geometric figures are defined to be congruent if there is a sequence of rigid motions that carries one onto the other. This is the principle of superposition. For triangles, congruence means the equality of all corresponding pairs of sides and all corresponding pairs of angles. During the middle grades, through experiences drawing triangles from given conditions, students notice ways to specify enough measures in a triangle to ensure that all triangles drawn with those measures are congruent. Once these triangle congruence criteria (ASA, SAS, and SSS) are established using rigid motions, they can be used to prove theorems about triangles, quadrilaterals, and other geometric figures.

Similarity transformations (rigid motions followed by dilations) define similarity in the same way that rigid motions define congruence, thereby formalizing the similarity ideas of "same shape" and "scale factor" developed in the middle grades. These transformations lead to the criterion for triangle similarity that two pairs of corresponding angles are congruent.

The definitions of sine, cosine, and tangent for acute angles are founded on right triangles and similarity, and, with the Pythagorean Theorem, are fundamental in many

High School-Geometry Conceptual Category (continued)

real-world and theoretical situations. The Pythagorean Theorem is generalized to non-right triangles by the Law of Cosines. Together, the Laws of Sines and Cosines embody the triangle congruence criteria for the cases where three pieces of information suffice to completely solve a triangle. Furthermore, these laws yield two possible solutions in the ambiguous case, illustrating that Side-Side-Angle is not a congruence criterion.

Analytic geometry connects algebra and geometry, resulting in powerful methods of analysis and problem solving. Just as the number line associates numbers with locations in one dimension, a pair of perpendicular axes associates pairs of numbers with locations in two dimensions. This correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to geometry and vice versa. The solution set of an equation becomes a geometric curve, making visualization a tool for doing and understanding algebra. Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric understanding, modeling, and proof. Geometric transformations of the graphs of equations correspond to algebraic changes in their equations.

Dynamic geometry environments provide students with experimental and modeling tools that allow them to investigate geometric phenomena in much the same way as computer algebra systems allow them to experiment with algebraic phenomena.

Connections to Equations. The correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to geometry and vice versa. The solution set of an equation becomes a geometric curve, making visualization a tool for doing and understanding algebra. Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric understanding, modeling, and proof.

High School—Statistics and Probability Conceptual Category

Decisions or predictions are often based on data-numbers in context. These decisions or predictions would be easy if the data always sent a clear message, but the message is often obscured by variability. Statistics provides tools for describing variability in data and for making informed decisions that take it into account.

Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations from patterns. Quantitative data can be described in terms of key characteristics: measures of shape, center, and spread. The shape of a data distribution might be described as symmetric, skewed, flat, or bell shaped, and it might be summarized by a statistic measuring center (such as mean or median) and a statistic measuring spread (such as standard deviation or interquartile range). Different distributions can be compared numerically using these statistics or compared visually using plots. Knowledge of center and spread are not enough to describe a distribution. Which statistics to compare, which plots to use, and what the results of a comparison might mean, depend on the question to be investigated and the real-life actions to be taken.

Randomization has two important uses in drawing statistical conclusions. First, collecting data from a random sample of a population makes it possible to draw valid conclusions about the whole population, taking variability into account. Second, randomly assigning individuals to different treatments allows a fair comparison of the effectiveness of those treatments. A statistically significant outcome is one that is unlikely to be due to chance alone, and this can be evaluated only under the condition of randomness. The conditions under which data are collected are important in drawing conclusions from the data; in critically reviewing uses of statistics in public media and other reports, it is important to consider the study design, how the data were gathered, and the analyses employed as well as the data summaries and the conclusions drawn.

Random processes can be described mathematically by using a probability model: a list or description of the possible outcomes (the sample space), each of which is assigned a probability. In situations such as flipping a coin, rolling a number cube, or drawing a card, it might be reasonable to assume various outcomes are equally likely. In a probability model, sample points represent outcomes and combine to make up events; probabilities of events can be computed by applying the Addition and Multiplication Rules. Interpreting these probabilities relies on an understanding of independence and conditional probability, which can be approached through the analysis of two-way tables. Technology plays an important role in statistics and probability by making it possible to generate plots, regression functions, and correlation coefficients, and to simulate many possible outcomes in a short amount of time.

Connections to Functions and Modeling. Functions may be used to describe data; if the data suggest a linear relationship, the relationship can be modeled with a regression line, and its strength and direction can be expressed through a correlation coefficient.

Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

High School—Algebra I

In Algebra I, a one-credit course, the fundamental purpose of this course is to formalize and extend the mathematics that students learned in the middle grades. Because it is built on the middle grades standards, this is a more ambitious version of Algebra I than has generally been offered. Instruction should focus on five critical areas: (1) analyze and explain the process of solving equations and inequalities: (2) learn function notation and develop the concepts of domain and range; (3) use regression techniques; (4) create quadratic and exponential expressions; and (5) select from among these functions to model phenomena. Each critical area is described below.
(1) By the end of eighth grade, students have learned to solve linear equations in one variable and have applied graphical and algebraic methods to analyze and solve systems of linear equations in two variables. Now, students analyze and explain the process of solving an equation. Students develop fluency writing, interpreting, and translating between various forms of linear equations and inequalities, and using them to solve problems. They master the solution of linear equations and apply related solution techniques and the laws of exponents to the creation and solution of simple exponential equations.
(2) In earlier grades, students define, evaluate, and compare functions, and use them to model relationships between quantities. In this unit, students will learn function notation and develop the concepts of domain and range. They explore many examples of functions, including sequences; they interpret functions given graphically, numerically, symbolically, and verbally, translate between representations, and understand the limitations of various representations. Students build on and informally extend their understanding of integer exponents to consider exponential functions. They compare and contrast linear and exponential functions, distinguishing between additive and multiplicative change. Students explore systems of equations and inequalities, and they find and interpret their solutions. They interpret arithmetic sequences as linear functions and geometric sequences as exponential functions.
(3) This area builds upon prior students' prior experiences with data, providing students with more formal means of assessing how a model fits data. Students use regression techniques to describe approximately linear relationships between quantities. They use graphical representations and knowledge of the context to make judgments about the appropriateness of linear models. With linear models, they look at residuals to analyze the goodness of fit.

High School—Algebra I (continued)

(4) In this area, students build on their knowledge from unit 2, where they extended the laws of exponents to rational exponents. Students apply this new understanding of number and strengthen their ability to see structure in and create quadratic and exponential expressions. They create and solve equations, inequalities, and systems of equations involving quadratic expressions.
(5) In this area, students consider quadratic functions, comparing the key characteristics of quadratic functions to those of linear and exponential functions. They select from among these functions to model phenomena. Students learn to anticipate the graph of a quadratic function by interpreting various forms of quadratic expressions. In particular, they identify the real solutions of a quadratic equation as the zeros of a related quadratic function. Students expand their experience with functions to include more specialized functions-absolute value, step, and those that are piecewise-defined.

The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5); Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 6-7); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics \& Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically.

Algebra I

The Real Number System (N-RN)

Use properties of rational and irrational numbers

N-RN. 3	Explain why: \bullet the sum or product of two rational numbers is rational; \bullet e the sum of a rational number and an irrational number is irrational; and \bullet e the product of a nonzero rational number and an irrational number is irrational.

Quantities (N-Q) *

Reason quantitatively and use units to solve problems	
N-Q. 1	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*
N-Q. 2	Define appropriate quantities for the purpose of descriptive modeling.* [Refer to the Quantities section of the High School Number and Quantity Conceptual Category in the previous pages of this document.]
N-Q. 3	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*
Algebra	
Seeing Structure in Expressions (A-SSE)	
Interpret the structure of expressions	
A-SSE. 1	Interpret expressions that represent a quantity in terms of its context.* a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.
A-SSE. 2	Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$ thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)$ $\left(x^{2}+y^{2}\right)$.
Write expressions in equivalent forms to solve problems	
A-SSE. 3	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15^{t} can be rewritten as $\left[1.15^{1 / 12}\right]^{12 t} \approx 1.012^{12 t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.

Algebra I

Arithmetic with Polynomials and Rational Expressions (A-APR)	
Perform arithmetic operations on polynomials	
A-APR. 1	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Understand the relationship between zeros and factors of polynomials	
A-APR. 3	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial (limit to 1st- and 2nddegree polynomials).
Creating Equations (A-CED) *	
Create equations that describe numbers or relationships	
A-CED. 1	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*
A-CED. 2	Create equations in two variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.* [Note this standard appears in future courses with a slight variation in the standard language.]
A-CED. 3	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.*
A-CED. 4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.*
Reasoning with Equations and Inequalities (A-REI)	
Understand solving equations as a process of reasoning and explain the reasoning	
A-REI. 1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
Solve equations and inequalities in one variable	
A-REI. 3	Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Algebra I

A-REI. 4	Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions.
Solve systems of equations	
A-REI. 5	Given a system of two equations in two variables, show and explain why the sum of equivalent forms of the equations produces the same solution as the original system.
A-REI. 6	Solve systems of linear equations algebraically, exactly, and graphically while focusing on pairs of linear equations in two variables.
Represent and solve equations and inequalities graphically	
A-REI. 10	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
A-REI. 11	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, quadratic, absolute value, and exponential functions.*
A-REI. 12	Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
Functions	
Interpreting Functions (F-IF)	
Understand the concept of a function and use function notation	
F-IF. 1	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.
F-IF. 2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
F-IF. 3	Recognize that sequences are functions whose domain is a subset of the integers.
Interpret functions that arise in applications in terms of the context	
F-IF. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*

Algebra I

F-IF. 5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
F-IF. 6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*
Analyze functions using different representations	
F-IF. 7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* a. Graph functions (linear and quadratic) and show intercepts, maxima, and minima. b. Graph square root and piecewise-defined functions, including absolute value functions.
F-IF. 8	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
F-IF. 9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Building Functions (F-BF)	
Build a function that models a relationship between two quantities	
F-BF. 1	Write a function that describes a relationship between two quantities.* a. Determine an explicit expression or steps for calculation from a context.
Build new functions from existing functions	
F-BF. 3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
	Linear, Quadratic, and Exponential Models (F-LE)*
Construct and compare linear, quadratic, and exponential models and solve problems	
F-LE. 1	Distinguish between situations that can be modeled with linear functions and with exponential functions.* a. Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals. b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

F-LE. 2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).*
Interpret expressions for functions in terms of the situation they model	
F-LE. 5	Interpret the parameters in a linear or exponential function in terms of a context.*
Statistics and Probability *	
Interpreting Categorical and Quantitative Data (S-ID)	
Summarize, represent, and interpret data on a single count or measurement variable	
S-ID. 1	Represent and analyze data with plots on the real number line (dot plots, histograms, and box plots).*
S-ID. 2	Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.*
S-ID. 3	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).*
Summarize, represent, and interpret data on two categorical and quantitative variables	
S-ID. 5	Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.*
S-ID. 6	Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.* a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. b. Informally assess the fit of a function by plotting and analyzing residuals. c. Fit a linear function for a scatter plot that suggests a linear association.
Interpret linear models	
S-ID. 7	Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.*
S-ID. 8	Compute (using technology) and interpret the correlation coefficient of a linear fit.*
S-ID. 9	Distinguish between correlation and causation.*

[^0]
Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning

High School-Geometry

The fundamental purpose of the course in Geometry a one-credit course, is to formalize and extend students' geometric experiences from the middle grades. Students explore more complex geometric situations and deepen their explanations of geometric relationships, moving towards formal mathematical arguments. Important differences exist between this Geometry course and the historical approach taken in Geometry classes. Close attention should be paid to the introductory content for the Geometry conceptual category found in the high school MS CCRS GCSS. The Mathematical Practice Standards apply throughout each course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. The six critical areas of this course include (1) building a thorough understanding of translations, reflections, and rotations; (2) developing the understanding of similarity and several theorems; (3) extension of formulas for 2dimensional and 3-dimensional objects (4) extension of $8^{\text {th }}$ grade geometric concepts of lines; (5) prove basic theorems about circles; and (6) work with experimental and theoretical probability. Each critical area is described below:
(1) In previous grades, students were asked to draw triangles based on given measurements. They also have prior experience with rigid motions: translations, reflections, and rotations and have used these to develop notions about what it means for two objects to be congruent. In this unit, students establish triangle congruence criteria, based on analyses of rigid motions and formal constructions. They use triangle congruence as a familiar foundation for the development of formal proof. Students prove theorems-using a variety of formats-and solve problems about triangles, quadrilaterals, and other polygons. They apply reasoning to complete geometric constructions and explain why they work.
(2) Students apply their earlier experience with dilations and proportional reasoning to build a formal understanding of similarity. They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles to understand right triangle trigonometry, with particular attention to special right triangles and the Pythagorean Theorem. Students develop the Laws of Sines and Cosines in order to find missing measures of general (not necessarily right) triangles, building on students' work with quadratic equations done in the first course. They are able to distinguish whether three given measures (angles or sides) define $0,1,2$, or infinitely many triangles.
(3) Students' experience with two-dimensional and three-dimensional objects is extended to include informal explanations of circumference, area and volume formulas. Additionally, students apply their knowledge of twodimensional shapes to consider the shapes of cross-sections and the result of rotating a two-dimensional object about a line.

High School-Geometry (continued)

(4) Building on their work with the Pythagorean theorem in 8th grade to find distances, students use a rectangular coordinate system to verify geometric relationships, including properties of special triangles and quadrilaterals and slopes of parallel and perpendicular lines, which relates back to work done in the first course. Students continue their study of quadratics by connecting the geometric and algebraic definitions of the parabola.
(5) Students prove basic theorems about circles, such as a tangent line is perpendicular to a radius, inscribed angle theorem, and theorems about chords, secants, and tangents dealing with segment lengths and angle measures. They study relationships among segments on chords, secants, and tangents as an application of similarity. In the Cartesian coordinate system, students use the distance formula to write the equation of a circle when given the radius and the coordinates of its center. Given an equation of a circle, they draw the graph in the coordinate plane, and apply techniques for solving quadratic equations, which relates back to work done in the first course, to determine intersections between lines and circles or parabolas and between two circles.
(6) Building on probability concepts that began in the middle grades, students use the languages of set theory to expand their ability to compute and interpret theoretical and experimental probabilities for compound events, attending to mutually exclusive events, independent events, and conditional probability. Students should make use of geometric probability models wherever possible. They use probability to make informed decisions.

The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5); Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 6-7); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics \& Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically.

Geometry
 Geometry
 Congruence (G-CO)

Experiment with transformations in the plane

G-CO. 1	Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
G-CO. 2	Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
G-CO. 3	Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
G-CO. 4	Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
G-CO. 5	Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Understand congruence in terms of rigid motions	
G-CO. 6	Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
G-CO. 7	Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
G-CO. 8	Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Prove geometric theorems	
G-CO. 9	Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
G-CO. 10	Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
G-CO. 11	Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Geometry

Make geometric constructions	
G-CO. 12	Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
G-CO. 13	Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
Similarity, Right Triangles, and Trigonometry (G-SRT)	
Understand similarity in terms of similarity transformations	
G-SRT. 1	Verify experimentally the properties of dilations given by a center and a scale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
G-SRT. 2	Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
G-SRT. 3	Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.
Prove theorems involving similarity	
G-SRT. 4	Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.
G-SRT. 5	Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Define trigonometric ratios and solve problems involving right triangles	
G-SRT. 6	Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
G-SRT. 7	Explain and use the relationship between the sine and cosine of complementary angles.
G-SRT. 8	Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.*
Circles (G-C)	
Understand and apply theorems about circles	
G-C. 1	Prove that all circles are similar.

Geometry

G-C.2	Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.				
G-C.3	Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.				
Find arc lengths and areas of sectors of circles		$	$	G-C.5	Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
:---	:---				
	Expressing Geometric Properties with Equations (G-GPE)				
Translate between the geometric description and the equation for a conic section					

Geometry

Modeling with Geometry (G-MG)

Apply geometric concepts in modeling situations

G-MG.1	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*
G-MG.2	Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).*
G-MG.3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*

[^1]
Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

High School—Algebra II

In Algebra II, a one-credit course, students build on their work with linear, quadratic, and exponential functions, to extend their repertoire of functions to include polynomial, rational, and radical functions. Students work closely with the expressions that define the functions, and continue to expand and hone their abilities to model situations and to solve equations, including solving quadratic equations over the set of complex numbers and solving exponential equations using the properties of logarithms. The Mathematical Practice Standards apply throughout this course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. The four critical areas of this course include (1) working extensively with polynomial operations; (2) building connections between geometry and trigonometric ratios; (3) understanding of a variety of function families; and (4) explore statistical data. Each critical area is described below:
(1) Students develop the structural similarities between the system of polynomials and the system of integers. Students draw on analogies between polynomial arithmetic and base-ten computation, focusing on properties of operations, particularly the distributive property. Students connect multiplication of polynomials with multiplication of multi-digit integers, and division of polynomials with long division of integers. Students identify zeros of polynomials, including complex zeros of quadratic polynomials, and make connections between zeros of polynomials and solutions of polynomial equations. The unit culminates with the fundamental theorem of algebra. A central theme of this unit is that the arithmetic of rational expressions is governed by the same rules as the arithmetic of rational numbers.
(2) Building on their previous work with functions, and on their work with trigonometric ratios and circles in Geometry, students now use the coordinate plane to extend trigonometry to model periodic phenomena.
(3) Students synthesize and generalize what they have learned about a variety of function families. They extend their work with exponential functions to include solving exponential equations with logarithms. They explore the effects of transformations on graphs of diverse functions, including functions arising in an application, in order to abstract the general principle that transformations on a graph always have the same effect regardless of the type of the underlying function. They identify appropriate types of functions to model a situation, they adjust parameters to improve the model, and they compare models by analyzing appropriateness of fit and making judgments about the domain over which a model is a good fit. The description of modeling as "the process of choosing and using mathematics and statistics to analyze empirical situations, to understand them better, and to make decisions" is at the heart of this unit. The narrative discussion and diagram of the modeling cycle should be considered when knowledge of functions, statistics, and geometry is applied in a modeling context.

High School—Algebra II (continued)

(4) Students see how the visual displays and summary statistics they learned in earlier grades relate to different types of data and to probability distributions. They identify different ways of collecting data-including sample surveys, experiments, and simulations-and the role that randomness and careful design play in the conclusions that can be drawn

[^2]
Algebra II

The Real Number System (N-RN)

Extend the properties of exponents to rational exponents

N-RN. 1	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left[5^{1 / 3}\right]^{3}=5^{(1 / 3)}$ to hold, so $\left[5^{1 / 33}\right]^{3}$ must equal 5.
N-RN.2Rewrite expressions involving radicals and rational exponents using the properties of exponents.	
\quad Quantities (N-Q) *	

Algebra II

A-SSE. 4	Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.*
Arithmetic with Polynomials and Rational Expressions (A-APR)	
Understand the relationship between zeros and factors of polynomials	
A-APR. 2	Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.
A-APR. 3	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial (limit to 1st- and 2nddegree polynomials).
Use polynomial identities to solve problems	
A-APR. 4	Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}$ can be used to generate Pythagorean triples.
Rewrite rational expressions	
A-APR. 6	Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.
Creating Equations (A-CED) *	
Create equations that describe numbers or relationships	
A-CED. 1	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*
A-CED. 2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [Note this standard appears in previous courses with a slight variation in the standard language.]
	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.
Reasoning with Equations and Inequalities (A-REI)	
Understand solving equations as a process of reasoning and explain the reasoning	
A-REI. 1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
A-REI. 2	Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Algebra II

Solve equations and inequalities in one variable	
A-REI. 4	Solve quadratic equations in one variable. b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions.
Solve systems of equations	
A-REI. 6	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
A-REI. 7	Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+y^{2}=3$.
Represent and solve equations and inequalities graphically	
A-REI. 11	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*
Functions	
Interpreting Functions (F-IF)	
Understand the concept of a function and use function notation	
F-IF. 3	Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)$ $=f(n)+f(n-1)$ for $n \geq 1$.
Interpret functions that arise in applications in terms of the context	
F-IF. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*
F-IF. 6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*

Algebra II

Analyze functions using different representations	
F-IF. 7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
F-IF. 8	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02) t, y=(0.97) t$, $y=(1.01) 12 t, y=(1.2) t / 10$, and classify them as representing exponential growth and decay.
F-IF. 9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Building Functions (F-BF)	
Build a function that models a relationship between two quantities	
F-BF. 1	Write a function that describes a relationship between two quantities.* a. Determine an explicit expression, a recursive process, or steps for calculation from a context. b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
F-BF. 2	Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.*
Build new functions from existing functions	
F-BF. 3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
F-BF. 4	Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x^{3}$ or $f(x)=(x+1) /(x-1)$ for $x \neq 1$.
Linear, Quadratic, and Exponential Models (F-LE)*	
Construct and compare linear, quadratic, and exponential models and solve problems	

Algebra II

F-LE. 2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).*
F-LE. 3	Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.*
F-LE. 4	For exponential models, express as a logarithm the solution to $a b^{c t}=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.*
Interpret expressions for functions in terms of the situation they model	
F-LE. 5	Interpret the parameters in a linear or exponential function in terms of a context.*
Trigonometric Functions (F-TF)	
Extend the domain of trigonometric functions using the unit circle	
F-TF. 1	Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
F-TF. 2	Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Geometry	
Expressing Geometric Properties with Equations (G-GPE)	
Translate between the geometric description and the equation for a conic section	
G-GPE. 2	Derive the equation of a parabola given a focus and directrix.
Statistics and Probability*	
Interpreting Categorical and Quantitative Data (S-ID)	
Summarize, represent, and interpret data on a single count or measurement variable	
S-ID. 4	Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.*
Summarize, represent, and interpret data on two categorical and quantitative variables	
S-ID. 6	Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.* a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
	Making Inferences and Justifying Conclusions (S-IC)

Understand and evaluate random processes underlying statistical experiments

S-IC. 1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population.*

Algebra II

S-IC. 2	Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . Would a result of 5 tails in a row cause you to question the model?*
Make inferences and justify conclusions from sample surveys, experiments, and observational studies	
S-IC. 3	Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.*
S-IC. 4	Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.*
S-IC. 5	Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.*
S-IC. 6	Evaluate reports based on data.*
Conditional Probability and the Rules of Probability (S-CP)	
Understand independence and conditional probability and use them to interpret data	
S-CP. 1	Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").*
S-CP. 2	Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.*
S-CP. 3	Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.*
S-CP. 4	Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.*
S-CP. 5	Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.*

Use the rules of probability to compute probabilities of compound events in a uniform					
probability model			$	$	Find the conditional probability of A given B as the fraction of B 's outcomes that also belong
:---	:---				
to A, and interpret the answer in terms of the model.*					

[^3]
Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

High School-Integrated Mathematics I

The fundamental purpose of Integrated Mathematics I, a one-credit course, is to formalize and extend the mathematics that students learned in the middle grades. The critical areas deepen and extend understanding of linear relationships, in part by contrasting them with exponential phenomena, and in part by applying linear models to data that exhibit a linear trend. Integrated Mathematics I uses properties and theorems involving congruent figures to deepen and extend understanding of geometric knowledge from prior grades. The final critical area in the course ties together the algebraic and geometric ideas studied. The Mathematical Practice Standards apply throughout this course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. The six critical focus areas of this course include (1)working with quantities to model and analyze situations; (2) exploring sequences and their relationships to functions; (3) working and translating between the various forms of linear equations and inequalities; (4) fitting data to a particular model; (5) establishing triangle congruency; and (6) verifying geometric relationships. Each critical area is described below:
(1) By the end of eighth grade students have had a variety of experiences working with expressions and creating equations. In this first critical focus area, students continue this work by using quantities to model and analyze situations, to interpret expressions, and by creating equations to describe situations.
(2) In earlier grades, students define, evaluate, and compare functions, and use them to model relationships between quantities. In this unit, students will learn function notation and develop the concepts of domain and range. They move beyond viewing functions as processes that take inputs and yield outputs and start viewing functions as objects in their own right. They explore many examples of functions, including sequences; they interpret functions given graphically, numerically, symbolically, and verbally, translate between representations, and understand the limitations of various representations. They work with functions given by graphs and tables, keeping in mind that, depending upon the context, these representations are likely to be approximate and incomplete. Their work includes functions that can be described or approximated by formulas as well as those that cannot. When functions describe relationships between quantities arising from a context, students reason with the units in which those quantities are measured. Students build on and informally extend their understanding of integer exponents to consider exponential functions. They compare and contrast linear and exponential functions, distinguishing between additive and multiplicative change. They interpret arithmetic sequences as linear functions and geometric sequences as exponential functions.
(3) By the end of eighth grade, students have learned to solve linear equations in one variable and have applied graphical and algebraic methods to analyze and

High School—Integrated Mathematics I (continued)

solve systems of linear equations in two variables. This critical area builds on these earlier experiences by asking students to analyze and explain the process of solving an equation and to justify the process used in solving a system of equations. Students develop fluency writing, interpreting, and translating between various forms of linear equations and inequalities, and using them to solve problems. They master the solution of linear equations and apply related solution techniques and the laws of exponents to the creation and solution of simple exponential equations. Students explore systems of equations and inequalities, and they find and interpret their solutions. All of this work is grounded on understanding quantities and on relationships between them.
(4) This critical area builds upon prior students' prior experiences with data, providing students with more formal means of assessing how a model fits data. Students use regression techniques to describe approximately linear relationships between quantities. They use graphical representations and knowledge of the context to make judgments about the appropriateness of linear models. With linear models, they look at residuals to analyze the goodness of fit.
(5) In previous grades, students were asked to draw triangles based on given measurements. They also have prior experience with rigid motions: translations, reflections, and rotations and have used these to develop notions about what it means for two objects to be congruent. In this area, students establish triangle congruence criteria, based on analyses of rigid motions and formal constructions. They solve problems about triangles, quadrilaterals, and other polygons. They apply reasoning to complete geometric constructions and explain why they work.
(6) Building on their work with the Pythagorean Theorem in 8th grade to find distances, students use a rectangular coordinate system to verify geometric relationships, including properties of special triangles and quadrilaterals and slopes of parallel and perpendicular lines.

The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5); Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 67); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics \&
Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically.

Integrated Mathematics I

Number and Quantity

Quantities ($\mathrm{N}-\mathrm{Q}$) *

Reason quantitatively and use units to solve problems	
N-Q. 1	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*
N-Q. 2	Define appropriate quantities for the purpose of descriptive modeling.*
N-Q. 3	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*
Algebra	
Seeing Structure in Expressions (A-SSE)	
Interpret the structure of expressions	
A-SSE. 1	Interpret expressions that represent a quantity in terms of its context.* a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.
Write expressions in equivalent forms to solve problems	
A-SSE. 3	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15^{t} can be rewritten as $\left[1.15^{1 / 12}\right]^{12 t} \approx 1.012^{12 t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.
Creating Equations (A-CED) *	
Create equations that describe numbers or relationships	
A-CED. 1	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*
A-CED. 2	Create equations in two variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.* [Note this standard appears in future courses with a slight variation in the standard language.]
A-CED. 3	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.*
A-CED. 4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.*

Integrated Mathematics I

Reasoning with Equations and Inequalities (A-REI)	
Solve equations and inequalities in one variable	
A-REI. 3	Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Solve systems of equations	
A-REI. 5	Given a system of two equations in two variables, show and explain why the sum of equivalent forms of the equations produces the same solution as the original system.
A-REI. 6	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
Represent and solve equations and inequalities graphically	
A-REI. 10	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
A-REI. 11	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value and exponential, and logarithmic functions.*
A-REI. 12	Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
Functions	
Interpreting Functions (F-IF)	
Understand the concept of a function and use function notation	
F-IF. 1	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.
F-IF. 2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
F-IF. 3	Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n)+f(n-1)$ for $n \geq 1$.
Interpret functions that arise in applications in terms of the context	
F-IF. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*

Integrated Mathematics I

F-IF. 5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*				
F-IF. 6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*				
Analyze functions using different representations		$	$	F-IF. 7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* a. Graph functions (linear and quadratic) and show intercepts, maxima, and minima.
:---	:---				
	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.				
F-IF.					
Fuild a function that models a relationship between two quantities					

Integrated Mathematics I

Geometry

Congruence (G-CO)

Experiment with transformations in the plane

G-CO. 1	Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
G-CO. 2	Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
G-CO. 3	Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
G-CO. 4	Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
G-CO. 5	Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Understand congruence in terms of rigid motions	
G-CO. 6	Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
G-CO. 7	Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
G-CO. 8	Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Prove geometric theorems	
G-CO.9	Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
G-CO. 10	Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
G-CO. 11	Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Integrated Mathematics I

Statistics and Probability

Interpreting Categorical and Quantitative Data (S-ID)

Summarize, represent, and interpret data on a single count or measurement variable

S-ID. 1	Represent and analyze data with plots on the real number line (dot plots, histograms, and box plots).*
S-ID. 2	Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.*
S-ID.3	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).*

Summarize, represent, and interpret data on two categorical and quantitative variables

S-ID.5	Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.*
S-ID.6	Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.* a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. c. Fit a linear function for a scatter plot that suggests a linear association.
Interpret linear models	

* Modeling Standards

Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

High School-Integrated Mathematics II

The focus of Integrated Mathematics II, a one-credit course, is on quadratic expressions, equations, and functions; comparing their characteristics and behavior to those of linear and exponential relationships from Integrated Mathematics I as organized into 6 critical areas. The need for extending the set of rational numbers arises and real and complex numbers are introduced so that all quadratic equations can be solved. The link between probability and data is explored through conditional probability and counting methods, including their use in making and evaluating decisions. The study of similarity leads to an understanding of right triangle trigonometry and connects to quadratics through Pythagorean relationships. Circles, with their quadratic algebraic representations, bring more depth to the course. The Mathematical Practice Standards apply throughout each course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. The six critical areas of this course include (1) exploring the distinction between rational and irrational numbers; (2) expending expertise of functions into piece-wise functions and quadratics; (3) focusing on the structure of expressions; (4) exploring compound events; (5) building a formal understanding of similarity; and (6) proving basic theorems about circles. Each critical area is described below:
(1) Students extend the laws of exponents to rational exponents and explore distinctions between rational and irrational numbers by considering their decimal representations. Students learn that when quadratic equations do not have real solutions the number system must be extended so that solutions exist, analogous to the way in which extending the whole numbers to the negative numbers allows $x+1=$ 0 to have a solution. Students explore relationships between number systems: whole numbers, integers, rational numbers, real numbers, and complex numbers. The guiding principle is that equations with no solutions in one number system may have solutions in a larger number system.
(2) Students consider quadratic functions, comparing the key characteristics of quadratic functions to those of linear and exponential functions. They select from among these functions to model phenomena. Students learn to anticipate the graph of a quadratic function by interpreting various forms of quadratic expressions. In particular, they identify the real solutions of a quadratic equation as the zeros of a related quadratic function.
When quadratic equations do not have real solutions, students learn that that the graph of the related quadratic function does not cross the horizontal axis. They expand their experience with functions to include more specialized functionsabsolute value, step, and those that are piecewise-defined.
(3) Students begin this critical area by focusing on the structure of expressions, rewriting expressions to clarify and reveal aspects of the relationship they represent. They create and solve equations, inequalities, and systems of equations involving exponential and quadratic expressions.

High School—Integrated Mathematics II (continued)

(4) Students use the languages of set theory to expand their ability to compute and interpret theoretical and experimental probabilities for compound events, attending to mutually exclusive events, independent events, and conditional probability. Students should make use of geometric probability models wherever possible. They use probability to make informed decisions.
(5) Students apply their earlier experience with dilations and proportional reasoning to build a formal understanding of similarity. They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles to understand right triangle trigonometry, with particular attention to special right triangles and the Pythagorean Theorem. It is in this unit that students develop facility with geometric proof. They use what they know about congruence and similarity to prove theorems involving lines, angles, triangles, and other polygons. They explore a variety of formats for writing proofs.
(6) In this area students prove basic theorems about circles, such as a tangent line is perpendicular to a radius, inscribed angle theorem, and theorems about chords, secants, and tangents dealing with segment lengths and angle measures. In the Cartesian coordinate system, students use the distance formula to write the equation of a circle when given the radius and the coordinates of its center, and the equation of a parabola with vertical axis when given an equation of its directrix and the coordinates of its focus. Given an equation of a circle, they draw the graph in the coordinate plane, and apply techniques for solving quadratic equations to determine intersections between lines and circles or a parabola and between two circles. Justifying common formulas for circumference, area, and volume of geometric objects, especially those related to circles is also explored.

The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5); Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 67); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics \&
Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically.

Integrated Mathematics II

Number and Quantity	
The Real Number System (N-RN)	
Extend the properties of exponents to rational exponents	
N-RN. 1	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left[5^{1 / 3}\right]^{3}=5^{(1 / 3) 3}$ to hold, so $\left[5^{1 / 3}\right]^{3}$ must equal 5 .
N-RN. 2	Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Use properties of rational and irrational numbers	
N-RN. 3	Explain why: - the sum or product of two rational numbers is rational; - the sum of a rational number and an irrational number is irrational; and - the product of a nonzero rational number and an irrational number is irrational.
Quantities ($\mathrm{N}-\mathrm{Q}$) *	
Reason quantitatively and use units to solve problems	
N-Q. 2	Define appropriate quantities for the purpose of descriptive modeling.*
The Complex Number System (N-CN)	
Perform arithmetic operations with complex numbers	
N-CN. 1	Know there is a complex number i such that $i^{2}=-1$, and every complex number has the form $a+b i$ with a and b real.
N-CN. 2	Use the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Use complex numbers in polynomial identities and equations	
N-CN. 7	Solve quadratic equations with real coefficients that have complex solutions.
Algebra	
Seeing Structure in Expressions (A-SSE)	
Interpret the structure of expressions	
A-SSE. 1	Interpret expressions that represent a quantity in terms of its context.* b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.

Integrated Mathematics II

A-SSE. 2	Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)$ $\left(x^{2}+y^{2}\right)$.
Write expressions in equivalent forms to solve problems	
A-SSE. 3	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
Arithmetic with Polynomials and Rational Expressions (A-APR)	
Perform arithmetic operations on polynomials	
A-APR. 1	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Creating Equations (A-CED) *	
Create equations that describe numbers or relationships	
A-CED. 1	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*
A-CED. 2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.* [Note this standard appears in previous courses with a slight variation in the standard language.]
A-CED. 3	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. *
A-CED. 4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.*
Reasoning with Equations and Inequalities (A-REI)	
Understand solving equations as a process of reasoning and explain the reasoning	
A-REI. 1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
	Solve equations and inequalities in one variable

Integrated Mathematics II

A-REI. 4	Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions.
Solve systems of equations	
A-REI. 6	Solve systems of linear equations algebraically, exactly, approximately, and graphically while focusing on pairs of linear equations in two variables.
A-REI. 7	Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+y^{2}=3$.
Functions	
	Interpreting Functions (F-IF)
Interpret functions that arise in applications in terms of the context	
F-IF. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*
F-IF. 5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
F-IF. 6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*
Analyze functions using different representations	
F-IF. 7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* a. Graph linear and quadratic functions and show intercepts, maxima, and minima. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

Integrated Mathematics II

F-IF. 8	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02)^{t}, y=(0.97)^{t}$, $y=(1.01)^{12 t}, y=(1.2)^{t / 10}$, and classify them as representing exponential growth and decay.
F-IF. 9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Building Functions (F-BF)	
Build a function that models a relationship between two quantities	
F-BF. 1	Write a function that describes a relationship between two quantities.* a. Determine an explicit expression, a recursive process, or steps for calculation from a context. b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
Build new functions from existing functions	
F-BF. 3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Geometry	
Similarity, Right Triangles, and Trigonometry (G-SRT)	
Understand similarity in terms of similarity transformations	
G-SRT. 1	Verify experimentally the properties of dilations given by a center and a scale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
G-SRT. 2	Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
G-SRT. 3	Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

Integrated Mathematics II

| \quad Prove theorems using similarity | | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: |$|$| G-SRT.4 | Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle
 divides the other two proportionally, and conversely; the Pythagorean Theorem proved using
 triangle similarity. |
| :--- | :--- |
| G-SRT.5Use congruence and similarity criteria for triangles to solve problems and to prove
 relationships in geometric figures. | |
| | Define trigonometric ratios and solve problems involving right triangles |

Integrated Mathematics II

S-CP. 3	Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of $B . *$
S-CP.4	Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.*
S-CP.5	Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.*
Use the rules of probability to compute probabilities of compound events in a uniform	
probability model	

* Modeling Standards

Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

High School-Integrated Mathematics III

It is in Mathematics III, a one-credit course, that students pull together and apply the accumulation of learning that they have from their previous courses, with content grouped into four critical areas, organized into units. They apply methods from probability and statistics to draw inferences and conclusions from data. Students expand their repertoire of functions to include polynomial, rational, and radical functions. They expand their study of right triangle trigonometry to include general triangles. And, finally, students bring together all of their experience with functions and geometry to create models and solve contextual problems. The Mathematical Practice Standards apply throughout this course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. The four critical areas of this course include
(1) working extensively with statistics and probability; (2) culminating work with the Fundamental Theorem of Algebra; (3) understanding of periodic phenomena; and (4) exploring function fitting. Each critical area is described below:
(1) In this area, students see how the visual displays and summary statistics they learned in earlier grades relate to different types of data and to probability distributions. They identify different ways of collecting data-including sample surveys, experiments, and simulations-and the role that randomness and careful design play in the conclusions that can be drawn.
(2) This area develops the structural similarities between the system of polynomials and the system of integers. Students draw on analogies between polynomial arithmetic and base-ten computation, focusing on properties of operations, particularly the distributive property. Students connect multiplication of polynomials with multiplication of multi-digit integers, and division of polynomials with long division of integers. Students identify zeros of polynomials and make connections between zeros of polynomials and solutions of polynomial equations. The area culminates with the fundamental theorem of algebra. Rational numbers extend the arithmetic of integers by allowing division by all numbers except 0 . Similarly, rational expressions extend the arithmetic of polynomials by allowing division by all polynomials except the zero polynomial. A central theme of this unit is that the arithmetic of rational expressions is governed by the same rules as the arithmetic of rational numbers.
(3) Students develop the Laws of Sines and Cosines in order to find missing measures of general (not necessarily right) triangles. They are able to distinguish whether three given measures (angles or sides) define $0,1,2$, or infinitely many triangles. This discussion of general triangles open up the idea

High School—Integrated Mathematics III (continued)

of trigonometry applied beyond the right triangle-that is, at least to obtuse angles. Students build on this idea to develop the notion of radian measure for angles and extend the domain of the trigonometric functions to all real numbers. They apply this knowledge to model simple periodic phenomena.
(4) Students synthesize and generalize what they have learned about a variety of function families. They extend their work with exponential functions to include solving exponential equations with logarithms. They explore the effects of transformations on graphs of diverse functions, including functions arising in an application, in order to abstract the general principle that transformations on a graph always have the same effect regardless of the type of the underlying functions. They identify appropriate types of functions to model a situation, they adjust parameters to improve the model, and they compare models by analyzing appropriateness of fit and making judgments about the domain over which a model is a good fit. The description of modeling as "the process of choosing and using mathematics and statistics to analyze empirical situations, to understand them better, and to make decisions" is at the heart of this area. The narrative discussion and diagram of the modeling cycle should be considered when knowledge of functions, statistics, and geometry is applied in a modeling context.

The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5);
Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 67); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics \&
Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically.

Integrated Mathematics III

\quad Number and Quantity					
Quantities (N-Q) *					

Creating Equations (A-CED) *	
Create equations that describe numbers or relationships	
A-CED. 1	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*
A-CED. 2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.* [Note this standard appears in previous courses with a slight variation in the standard language.]
Reasoning with Equations and Inequalities (A-REI)	
Understand solving equations as a process of reasoning and explain the reasoning	
A-REI. 1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
A-REI. 2	Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
Represent and solve equations and inequalities graphically	
A-REI. 11	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*
Functions	
Interpreting Functions (F-IF)	
Interpret functions that arise in applications in terms of the context	
F-IF. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*
F-IF. 6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*
Analyze functions using different representations	
F-IF. 7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

Integrated Mathematics III

F-IF. 9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Building Functions (F-BF)	
Build new functions from existing functions	
F-BF. 3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
F-BF. 4	Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x^{3}$ or $f(x)=(x+1) /(x-1)$ for $x \neq 1$.
Linear, Quadratic, and Exponential Models (F-LE)*	
Construct and compare linear, quadratic, and exponential models and solve problems	
F-LE. 4	For exponential models, express as a logarithm the solution to $a b^{c t}=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.*
Trigonometric Functions (F-TF)	
Extend the domain of trigonometric functions using the unit circle	
F-TF. 1	Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
F-TF. 2	Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Model periodic phenomena with trigonometric functions	
F-TF. 5	Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.*
Prove and apply trigonometric identities	
F-TF. 8	Prove the Pythagorean identity $\sin (\Theta)^{2}+\cos (\Theta)^{2}=1$ and use it to find $\sin (\Theta), \cos (\Theta)$, or $\tan (\Theta)$, given $\sin (\Theta), \cos (\Theta)$, or $\tan (\Theta)$ and the quadrant of the angle.

\quad Geometry	
	\quad Congruence (G-CO)

Integrated Mathematics III

G-GPE. 6	Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
G-GPE. 7	Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.*
Geometric Measurement and Dimension (G-GMD)	
Visualize relationships between two-dimensional and three-dimensional objects	
G-GMD. 4	Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.
Modeling with Geometry (G-MG)	
Apply geometric concepts in modeling situations	
G-MG. 1	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*
G-MG. 2	Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).*
G-MG. 3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*
Statistics and Probability *	
Interpreting Categorical and Quantitative Data (S-ID)	
Summarize, represent, and interpret data on a single count or measurement variable	
S-ID. 4	Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.*
Summarize, represent, and interpret data on two categorical and quantitative variables	
S-ID. 6	Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.* a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. b. Informally assess the fit of a function by plotting and analyzing residuals.
Making Inferences and Justifying Conclusions (S-IC)	
Understand and evaluate random processes underlying statistical experiments	
S-IC. 1	Understand statistics as a process for making inferences about population parameters based on a random sample from that population.*

Integrated Mathematics III

S-IC. 2	Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?*
Make inferences and justify conclusions from sample surveys, experiments, and	
observational studies	

[^4]
Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

High School—Advanced Mathematics Plus

Advanced Mathematics Plus, a one-credit math course, specifies the mathematics that students should study in order to be college and career ready. The Advanced Mathematics Plus Course includes rigorous mathematical standards that will prepare students for collegiate courses dealing with higher-level trigonometric, algebraic, and calculus concepts. This course was designed to be a fourth year math course. Throughout the duration of this course, teachers should make every effort to ensure the Standards for Mathematical Practice are addressed.

The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5);
Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 67); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics \&
Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically.

Advanced Mathematics Plus

Number and Quantity

The Complex Number System (N-CN)

Perform arithmetic operations with complex numbers

N-CN. 3	Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.		
Represent complex numbers and their operations on the complex plane			
N-CN. 4	Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.		
N-CN. 5	Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1+\sqrt{ } 3 i)^{3}=8$ because $(-1+\sqrt{ } 3 i)$ has modulus 2 and argument 120°.		
N-CN. 6	Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.		
Use complex numbers in polynomial identities and equations			
N-CN. 8	Extend polynomial identities to the complex numbers. For example, rewrite $x^{2}+4$ as $(x+2 i)(x-2 i)$.		
N-CN. 9	Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.		
Vector and Matrix Quantities (N-VM)			
Represent and model with vector quantities			
N-VM. 1	Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., $\boldsymbol{v},\|\boldsymbol{v}\|,\\|\boldsymbol{v}\\|, v$).		
N-VM. 2	Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.		
N-VM. 3	Solve problems involving velocity and other quantities that can be represented by vectors.		

Advanced Mathematics Plus

Perform operations on vectors			
N-VM. 4	Add and subtract vectors. a. Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes. b. Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum. c. Understand vector subtraction $\boldsymbol{v}-\boldsymbol{w}$ as $\boldsymbol{v}+(-\boldsymbol{w})$, where $-\boldsymbol{w}$ is the additive inverse of \boldsymbol{w}, with the same magnitude as \boldsymbol{w} and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.		
N-VM. 5	Multiply a vector by a scalar. a. Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as $c\left(v_{x}, v_{y}\right)=$ ($c v_{x}, c v_{y}$). b. Compute the magnitude of a scalar multiple $c v$ using $\\|c v\\|=\|c\| v$. Compute the direction of $c v$ knowing that when $\|c\| v \neq 0$, the direction of $c v$ is either along \boldsymbol{v} (for $c>0$) or against \boldsymbol{v} (for $c<0$).		
Perform operations on matrices and use matrices in applications			
N-VM. 6	Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.		
N-VM. 7	Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.		
N-VM. 8	Add, subtract, and multiply matrices of appropriate dimensions.		
N-VM. 9	Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.		
N-VM. 10	Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.		
N-VM. 11	Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.		
N-VM. 12	Work with 2×2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area.		
Algebra			
Arithmetic with Polynomials and Rational Expressions (A-APR)			
Use polynomial identities to solve problems			
A-APR. 5	Know and apply the Binomial Theorem for the expansion of $(x+y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle. ${ }^{1}$		

Advanced Mathematics Plus

\quad Rewrite rational expressions						

Advanced Mathematics Plus

Trigonometric Functions (F-TF)	
Extend the domain of trigonometric functions using the unit circle	
F-TF. 3	Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi / 3, \pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine, cosine, and tangent for $\pi-x, \pi^{+x}$, and $2 \pi-x$ in terms of their values for x, where x is any real number.
F-TF. 4	Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.
Model periodic phenomena with trigonometric functions	
F-TF. 5	Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.*
F-TF. 6	Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.
F-TF. 7	Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context. *
Prove and apply trigonometric identities	
F-TF. 9	Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.
Geometry	
Similarity, Right Triangles, and Trigonometry (G-SRT)	
Apply trigonometry to general triangles	
G-SRT. 9	Derive the formula $A=1 / 2 a b \sin (C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
G-SRT. 10	Prove the Laws of Sines and Cosines and use them to solve problems.
G-SRT. 11	Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).
Circles (G-C)	
Understand and apply theorems about circles	
G-C. 4	Construct a tangent line from a point outside a given circle to the circle.

Advanced Mathematics Plus

Expressing Geometric Properties with Equations (G-GPE)

Translate between the geometric description and the equation for a conic section

G-GPE. 3	Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.
Geometric Measurement and Dimension (G-GMD)	
Explain volume formulas and use them to solve problems	
G-GMD. 2	Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.
Statistics and Probability *	
Conditional Probability and the Rules of Probability (S-CP)	
Use the rules of probability to compute probabilities of compound events in a uniform probability model	
S-CP. 8	Apply the general Multiplication Rule in a uniform probability model, $P(A$ and $B)=$ $P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model.*
S-CP. 9	Use permutations and combinations to compute probabilities of compound events and solve problems.*
Using Probability to Make Decisions (S-MD)	
Calculate expected values and use them to solve problems	
S-MD. 1	Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.*
S-MD. 2	Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.*
S-MD. 3	Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.*
S-MD. 4	Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?*

Advanced Mathematics Plus

Use probability to evaluate outcomes of decisions	

${ }^{1}$ The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.

* Modeling Standards

Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

High School—Algebra III

Algebra III, a one-credit course, includes content standards from the 2007 Mississippi Mathematics Framework Revised Pre-Calculus course and the Mississippi College- and CareerReadiness Standards for Mathematics; and covers those skills and objectives necessary for success in courses higher than Algebra II and Integrated Mathematics III. Topics of study include sequences and series, functions, and higher order polynomials. Polynomial functions provide the context for higher-order investigations. Topics are addressed from a numeric, graphical, and analytical perspective. Technology is to be used to enhance presentation and understanding of concepts. The instructional approach should provide opportunities for students to work together collaboratively and cooperatively as they solve routine and non-routine problems. Communication strategies should include reading, writing, speaking, and critical listening as students present and evaluate mathematical arguments, proofs, and explanations about their reasoning. Algebra III is typically taken by students who have successfully completed Algebra II and Geometry.

The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5); Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 67); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics \&
Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically.

Algebra III
 Number and Quantity

Algebra III

18	Find the composite of two given functions and find the inverse of a given function. Extend this concept to discuss the identity function $f(x)=x$.
19	Simplify complex algebraic fractions (with/without variable expressions and integer exponents) to include expressing $\frac{f(x+h)-f(x)}{h}$ as a single simplified fraction when $\mathrm{f}(\mathrm{x})=$ $\frac{1}{1-x}$ for example.
20	Find the possible rational roots using the Rational Root Theorem.
21	Find the zeros of polynomial functions by synthetic division and the Factor Theorem.
22	Graph and solve quadratic inequalities.
Functions	
Analyze functions using different representations	
23	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
24	Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
Build a function that models a relationship between two quantities	
25	Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.
Build new functions from existing functions	
26	Verify by composition that one function is the inverse of another.
27	Read values of an inverse function from a graph or a table, given that the function has an inverse.
28	Produce an invertible function from a non-invertible function by restricting the domain.
29	Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
Extend the domain of trigonometric functions using the unit circle	
30	Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi / 3$, $\pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine, cosine, and tangent for $\pi-x, \pi+x$, and $2 \pi-x$ in terms of their values for x, where x is any real number.
31	Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.

Algebra III

\quad Model periodic phenomena with trigonometric functions		
32	Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.*	
33	Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.	
34	Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.	
\quad Prove and apply trigonometric identities		

Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

High School-Calculus

Calculus, a one-credit course, includes content standards from the 2007 Mississippi Mathematics Framework Revised. This course focuses on the mathematics of change. The major focus is on differential and integral calculus. The use of graphing calculators and other technologies are major components of the course. The instructional approach should provide opportunities for students to work together collaboratively and cooperatively as they solve routine and non-routine problems. Communication strategies should include reading, writing, speaking, and critical listening as students present and evaluate mathematical arguments, proofs, and explanations about their reasoning. This one-credit course is designed for the student who has been successful in Algebra II, Integrated Mathematics III, or Algebra III.

The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5);
Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 67); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics \&
Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically.

Calculus

Number and Quantity

Compute and determine the reasonableness of results in mathematical and real world situations

1	Estimate limits from graphs or tables.
2	Estimate numerical derivatives from graphs or tables of data.
3	Prove statements using mathematical induction.
Algebra	
Demonstrate basic knowledge of functions, including their behavior and characteristics	
4	Predict and explain the characteristics and behavior of functions and their graphs (domain, range, increasing/decreasing intervals, intercepts, symmetry, and end behavior).
5	Investigate, describe, and determine asymptotic behavior using tables, graphs, and analytical methods
6	Determine and justify the continuity and discontinuity of functions
Evaluate limits and communicate an understanding of the limiting process	
7	Solve mathematical situations and application problems involving or using derivatives, including exponential, logarithmic, and trigonometric functions.
8	Calculate limits using algebraic methods.
9	Verify the behavior and direction of non-determinable limits.
Use the definition and formal rules of differentiation to compute derivatives	
10	State and apply the formal definition of a derivative.
11	Apply differentiation rules to sums, products, quotients, and powers of functions.
12	Use the chain rule and implicit differentiation.
13	Describe the relationship between differentiability and continuity.
Apply derivatives to find solutions in a variety of situations	
15	Define a derivative and explain the purpose/utility of the derivative.
16	Apply the derivative as a rate of change in varied contexts, including velocity, speed, and acceleration.
17	Apply the derivative to find tangent lines and normal lines to given curves at given points.
18	Predict and explain the relationships between functions and their derivatives.
19	Model rates of change to solve related rate problems.
20	Solve optimization problems.

Calculus

Employ various integration properties and techniques to evaluate integrals	
21	State and apply the First and Second Fundamental Theorem of Calculus.
22	Apply the power rule and u-substitution to evaluate indefinite integrals.
Geometry	
Use geometric concepts to gain insights into, answer questions about, and graph various implications of differentiation	
23	Demonstrate and explain the differences between average and instantaneous rates of change.
24	Apply differentiation techniques to curve sketching
25	Apply Rolle's Theorem and the Mean Value Theorem and their geometric consequences.
26	Identify and apply local linear approximations.
27	Analyze curves with attention to non-decreasing functions (monotonicity) and concavity.
Statistics and Probability	
Adapt integration methods to model situations to problems	
28	Apply integration to solve problems of area.
29	Utilize integrals to model and find solutions to real-world problems such as calculating displacement and total distance traveled.
Apply appropriate techniques, tools, and formulas to determine values for the definite integral	
30	Interpret the concept of definite integral as a limit of Riemann sums over equal subdivisions.

Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

High School—SREB Math Ready

The Southern Region Education Board (SREB) Math Ready Course, a one-credit course, is designed to assist students who are in need of a fourth year mathematics preparatory course prior to entering college. This course is best suited for students who have not mastered skills needed for Advanced Placement courses. The course is built with rigor, innovative instructional strategies, and a concentration on contextual learning that departs from procedural memorization and focuses on engaging the students in a real-world context. In short, this course targets students with weaknesses and college-ready skill gaps and reeducates them in new ways to ensure they are prepared for postsecondary-level mathematics.

The Math Ready course focuses on the key readiness standards from the MS CCRS, as well as, the eight Standards for Mathematical Practice needed for students to be ready to undertake postsecondary academic or career preparation in non-STEM fields or majors. The course addresses content standards taught throughout high school, including content from Algebra I, Geometry, and Algebra II that are essential for college and careers.

The SREB Math Ready Course consists of seven mandatory modules (or units): algebraic expressions, equations, measurement and proportional reasoning, linear functions, linear systems of equations, quadratic functions, exponential functions, and an optional module on summarizing and interpreting statistical data. While this course covers the basics in math practices and reviews the procedural steps needed to be successful in math, it is designed to be taught in a new, engaging way based heavily on conceptual teaching and learning. Eight units comprise this course. They are described below.

Unit 1: Algebraic Expressions

The algebraic expressions unit was designed to solidify student understanding of expressions while providing the students with an opportunity to have success early in the course. The recurring theme integrated in this unit focuses on engaging students using and expanding the concepts found within purposefully chosen activities. Through guided lessons, students will manipulate, create and analyze algebraic expressions, and look at the idea of whether different sets of numbers are closed under certain operations.

Unit 2: Equations

The equations unit calls for students to construct and evaluate problems that involve one or two steps while seeking understanding of how and why equations and inequalities are used in their daily lives. Students also use the structure of word problems and equations to rewrite and solve equations in different forms revealing different relationships.

High School-SREB Math Ready (continued)

Unit 3: Measurement and Proportional Reasoning

This unit deals with unit conversions, using proportions for scaling, and area and volume. The unit requires higher-order thinking and number sense in order to get to the true intent of the standards covered. It is useful in helping students make connections with math and science or other subjects.

Unit 4: Linear Functions

This unit takes students back to the foundation of all high school mathematics-an in-depth study of linear functions. Along with allowing students to differentiate between relations that are functions and those that are not, the unit helps students specifically examine characteristics of linear functions. By looking closely at linear functions in multiple forms, students are expected to graph and write equations, as well as interpret their meaning in context of the slope and y-intercept. Students conclude with a project allowing them to collect their own data and write a line of best fit from that data.

Unit 5: Linear Systems of Equations

The systems unit deals with solving systems of linear equations. This involves helping students classify solutions (one, none or infinitely many), as well as set up and solve problems using systems of equations. Students also choose the best way to solve a system of equations and explain their solutions.

Unit 6: Quadratic Functions

This unit is an expansive look at quadratic functions: their graphs, tables and algebraic functions. It stresses multiple approaches to graphing, solving and understanding quadratics, as students explore, make conjectures and draw conclusions in group-work settings. In this unit, students explore and learn from multiple applications of quadratics. The unit assumes students have seen quadratics before but may not have a concrete, transferrable understanding of quadratic functions. The unit does not cover algebraic manipulations (multiplying and factoring), as these are addressed in previous units.

Unit 7: Exponential Functions

This unit develops students' fluency in exponential functions through varying real-life financial applications/inquiries.

Unit 8: Summarizing and Interpreting Statistical Data (optional)

In this unit, students further develop skills to read, analyze, and communicate (using words, tables, and graphs) relationships and patterns found in data sets of one or more variables. Students learn how to choose the appropriate statistical tools and measurements to assist in analysis, communicate results, and read and inter interpret graphs, measurements, and formulas which are crucial skills in a world overflowing with data. Students explore these concepts while modeling real contexts based on data they collect.

School districts that are interested in offering this course should visit http://www.sreb.org/page/1684/math_ready.html to review and download course materials.

Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

High School—Advanced Placement (AP)

Calculus AB Calculus BC

Note: Since AP Course Descriptions are updated regularly, please visit AP Central® (apcentral.collegeboard.org) to determine whether a more recent Course Description is available.

AP courses in Calculus consist of a full high school academic year of work, and are onecredit courses comparable to calculus courses in colleges and universities. It is expected that students who take an AP course in calculus will seek college credit, college placement, or both from institutions of higher learning.

The AP Program includes specifications for two calculus courses and the exam for each course. The two courses and the two corresponding exams are designated as Calculus AB and Calculus BC.

Calculus AB can be offered as an AP course by any school that can organize a curriculum for students with mathematical ability. Calculus $A B$ is designed to be taught over a full high school academic year. It is possible to spend some time on elementary functions and still teach the Calculus AB curriculum within a year. However, if students are to be adequately prepared for the Calculus AB Exam, most of the year must be devoted to the topics in differential and integral calculus. These topics are the focus of the AP Exam questions.

Calculus BC is a full-year course in the calculus of functions of a single variable. It includes all topics taught in Calculus AB plus additional topics, but both courses are intended to be challenging and demanding; they require a similar depth of understanding of common topics.

A Calculus $A B$ subscore is reported based on performance on the portion of the Calculus $B C$ Exam devoted to Calculus $A B$ topics. Both courses described here represent college-level mathematics for which most colleges grant advanced placement and/or credit. Most colleges and universities offer a sequence of several courses in calculus, and entering students are placed within this sequence according to the extent of their preparation, as measured by the results of an AP Exam or other criteria. Appropriate credit and placement are granted by each institution in accordance with local policies.

The content of Calculus $B C$ is designed to qualify the student for placement and credit in a course that is one course beyond that granted for Calculus AB. Many colleges provide statements regarding their AP policies in their catalogs and on their websites.

High School—Advanced Placement (AP) (continued)

Calculus AB Calculus BC

Success in AP Calculus is closely tied to the preparation students have had in courses leading up to their AP courses. Students should have demonstrated mastery of material from courses that are the equivalent of four full years of high school mathematics before attempting calculus. These courses should include the study of algebra, geometry, coordinate geometry, and trigonometry, with the fourth year of study including advanced topics in algebra, trigonometry, analytic geometry, and elementary functions. Even though schools may choose from a variety of ways to accomplish these studies - including beginning the study of high school mathematics in grade 8; encouraging the election of more than one mathematics course in grade 9,10 , or 11 ; or instituting a program of summer study or guided independent study - it should be emphasized that eliminating preparatory course work in order to take an AP course is not appropriate.

Calculus $A B$ and Calculus $B C$ are primarily concerned with developing the students' understanding of the concepts of calculus and providing experience with its methods and applications. The courses emphasize a multi-representational approach to calculus, with concepts, results, and problems being expressed graphically, numerically, analytically, and verbally. The connections among these representations also are important.

Technology should be used regularly by students and teachers to reinforce the relationships among the multiple representations of functions, to confirm written work, to implement experimentation, and to assist in interpreting results. Through the use of the unifying themes of derivatives, integrals, limits, approximation, and applications and modeling, the course becomes a cohesive whole rather than a collection of unrelated topics. These themes are developed using all the functions listed in the prerequisites.

Goals of AP Calculus AB and AP Calculus BC:

- Students should be able to work with functions represented in a variety of ways: graphical, numerical, analytical, or verbal. They should understand the connections among these representations.
- Students should understand the meaning of the derivative in terms of a rate of change and local linear approximation, and should be able to use derivatives to solve a variety of problems.
- Students should understand the meaning of the definite integral both as a limit of Riemann sums and as the net accumulation of change, and should be able to use integrals to solve a variety of problems.

High School—Advanced Placement (AP) (continued)

Calculus AB
 Calculus BC

- Students should understand the relationship between the derivative and the definite integral as expressed in both parts of the Fundamental Theorem of Calculus.
- Students should be able to communicate mathematics and explain solutions to problems both verbally and in written sentences.
- Students should be able to model a written description of a physical situation with a function, a differential equation, or an integral.
- Students should be able to use technology to help solve problems, experiment, interpret results, and support conclusions.
- Students should be able to determine the reasonableness of solutions, including sign, size, relative accuracy, and units of measurement.
- Students should develop an appreciation of calculus as a coherent body of knowledge and as a human accomplishment.

AP Central® (apcentral.collegeboard.org)

Interested parties can find the following Web resources at AP Central:

- AP Course Descriptions, information about the AP Course Audit, AP Exam questions and scoring guidelines, sample syllabi, and feature articles.
- A searchable Institutes and Workshops database, providing information about professional development events.
- The Course Home Pages (apcentral.collegeboard.org/course homepages), which contain articles, teaching tips, activities, lab ideas, and other course-specific content contributed by colleagues in the AP community.
- Moderated electronic discussion groups (EDGs) for each AP course, provided to facilitate the exchange of ideas and practices.

Additional Resources

Teacher's Guides and Course Descriptions may be downloaded free of charge from AP Central; printed copies may be purchased through the College Board Store (store.collegeboard.org).

Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

High School—Advanced Placement (AP) Statistics

Note: Since AP Course Descriptions are updated regularly, please visit AP Central® (apcentral.collegeboard.org) to determine whether a more recent Course Description is available.

The AP statistics course, a one-credit course, introduces students to the major concepts and tools for collecting, analyzing and drawing conclusions from data. Students are exposed to four broad conceptual themes:

1. Exploring Data: Describing patterns and departures from patterns
2. Sampling and Experimentation: Planning and conducting a study
3. Anticipating Patterns: Exploring random phenomena using probability and simulation
4. Statistical Inference: Estimating population parameters and testing hypotheses

Students who successfully complete the course and exam may receive credit, advanced placement or both for a one-semester introductory college statistics course. This does not necessarily imply that the high school course should be one semester long. Each high school needs to determine the length of its AP Statistics course to best serve the needs of its students. The four themes are described below.

I. Exploratory analysis of data makes use of graphical and numerical techniques to study patterns and departures from patterns.

In examining distributions of data, students should be able to detect important characteristics, such as shape, location, variability and unusual values. From careful observations of patterns in data, students can generate conjectures about relationships among variables. The notion of how one variable may be associated with another permeates almost all of statistics, from simple comparisons of proportions
through linear regression. The difference between association and causation must accompany this conceptual development throughout.

II. Data must be collected according to a well-developed plan if valid information is to be obtained.

If data are to be collected to provide an answer to a question of interest, a careful plan must be developed. Both the type of analysis that is appropriate and the nature of conclusions that can be drawn from that analysis depend in a critical way on how the data was collected. Collecting data in a reasonable way, through either sampling or experimentation, is an essential step in the data analysis process.

III. Probability is the tool used for anticipating what the distribution of data should look like under a given model.

Random phenomena are not haphazard: they display an order that emerges only in the long run and is described by a distribution. The mathematical description

High School—Advanced Placement (AP) Statistics (continued)

of variation is central to statistics. The probability required for statistical inference is not primarily axiomatic or combinatorial but is oriented toward using probability distributions to describe data.

IV. Statistical inference guides the selection of appropriate models.

Models and data interact in statistical work: models are used to draw conclusions from data, while the data are allowed to criticize and even falsify the model through inferential and diagnostic methods. Inference from data can be thought of as the process of selecting a reasonable model, including a statement in probability language, of how confident one can be about the selection.

AP Central® (apcentral.collegeboard.org)

Interested parties can find the following Web resources at AP Central:

- AP Course Descriptions, information about the AP Course Audit, AP Exam questions and scoring guidelines, sample syllabi, and feature articles.
- A searchable Institutes and Workshops database, providing information about professional development events.
- The Course Home Pages (apcentral.collegeboard.org/course homepages), which contain articles, teaching tips, activities, lab ideas, and other course-specific content contributed by colleagues in the AP community.
- Moderated electronic discussion groups (EDGs) for each AP course, provided to facilitate the exchange of ideas and practices.

Additional Resources

Teacher's Guides and Course Descriptions may be downloaded free of charge from AP Central; printed copies may be purchased through the College Board Store (store.collegeboard.org).

Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Compensatory Mathematics Course Description

Students in need of instructional support, intervention or remediation may be enrolled in a Compensatory Mathematics course under the following stipulations: The Compensatory mathematics course:

1. must be taken in concert with a credit-bearing course at the same grade level;
2. includes content supportive of the accompanying credit-bearing course;
3. should make every attempt to incorporate the Standards for Mathematical Practice; and
4. may be taken as an elective, but will not satisfy the number of mathematics Carnegie units required for graduation.

Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Foundations of Algebra Course

Foundations of Algebra is a one-math credit course offered only to $9^{\text {th }}$ grade students. The primary purpose of the Foundations of Algebra course is to provide a basis for curriculum development for rising 9^{t} grade students in need of substantial support prior to taking Algebra I. The content of the Foundations of Algebra course focuses on equations, inequalities, functions, polynomials, geometry, and statistics as well as the standards of mathematical practice. The standards for this course were developed based on core content that should have been mastered by the end of the grade 8 and key skills that will be introduced in Algebra I. These standards are indicated in red font.

Additional standards have been developed to ensure conceptual understanding. Students who have already successfully completed Algebra I may not take this course. Teachers of this course are encouraged to incorporate real-world contexts, appropriate manipulatives, and technology to assist students in developing the conceptual understanding needed to master course content.

Foundations of Algebra Course

Equations and Inequalities

1	Interpret key features of an expression (i.e., terms, factors, and coefficients). (A-SSE.1a)
2	Create expressions that can be modeled by a real-world context.
3	Use the structure of an expression to identify ways to rewrite it. (A-SSE.2)
4	Simplify and evaluate numerical and algebraic expressions. (7.EE.1)
5	Compare and contrast an expression and an equation and give examples of each.
6	Given an equation, solve for a specified variable of degree one (i.e. isolate a variable). (6.EE.7, 7.EE.4)
7	Fluently solve and check multi-step equations and inequalities with an emphasis on the distributive property, variables on both sides, and rational coefficients. Explain each step when solving a multistep equation and inequality. Justify each step using the properties of real numbers.
8	Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. (7.EE.4a)
9	Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Solve inequalities of these forms fluently. (7.EE.4b)
10	Graph the solution point of an equation and the solution set of an inequality in one variable on a horizontal number line. For inequalities, be able to interpret and write the solution set in a variety of ways (e.g., set notation).
11	Justify when linear equations in one variable will yield one solution, infinitely many solutions, or no solution. (8.EE.7a)
	Functions
12	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. Use function notation, where appropriate. (F-IF.1, F-IF.2)
13	Compare and contrast a function and a relation. Use appropriate strategies to assess whether a given situation represents a function or a relation (e.g.. the vertical line test).
14	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. (F-IF.7)
15	Determine the rate of change of a linear function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. (8.F.4) Use the rate of change to determine if two lines are parallel, perpendicular, or neither.
16	Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. (8.F.4)
17	Create and graph the equation of a linear function given the rate of change and y-intercept. Compare and contrast up to three linear functions written in a various forms (i.e., point-slope, slope-intercept, standard form).
18	Given two points, a graph, a table of values, a mapping, or a real-world context determine the linear function that models this information. Fluently convert between the point-slope, slope-intercept, and standard form of a line.

Foundations of Algebra Course

19	Create and identify the parent function for linear and quadratic functions in the Coordinate Plane.
20	Compare the properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change. (Limited to linear and quadratic functions only.) (8.F.2)
21	Describe the following characteristics of linear and quadratic parent functions by inspection: domain/range, increasing/decreasing intervals, intercepts, symmetry, and asymptotic behavior. Identify each characteristic in set notation or words, where appropriate. (Algebra III, standard 8)
22	Graph a system of two functions, $f(x)$ and $g(x)$, on the same Coordinate Plane by hand for simple cases, and with technology for complicated cases. Explain the relationship between the point(s) of intersection and the solution to the system. Determine the solution(s) using technology, a tables of values, substitution, or successive approximations. (Limited to linear and quadratic functions only.) (8.EE.7b, A-REI.6, A-REI.11)
23	With accuracy, graph the solutions to a linear inequality in two variables as a half-plane, and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes on the same Coordinate Plane. (A-REI.12) Construct graphs of linear inequalities and systems of linear inequalities without technology. Use appropriate strategies to verify points that may or may not belong to the solution set.
24	Identify real-world contexts that can be modeled by a system of inequalities in two variables. (Limited to three inequalities.)
25	Identify when systems of equations and inequalities have constraints. (A-CED.3)
26	Perform simple translations on linear functions given in a variety of forms (e.g., two points, a graph, a table of values, a mapping, slope-intercept form, or standard form). Explain the impact on the parent function when the slope is greater than one or less than one and the effect of increasing/decreasing the y-intercept.
27	Given the graph of function in the form $f(x)+k, k f(x), f(k x)$, or $f(x+k)$, where k belongs to the set of integers, identify the domain/range, increasing/decreasing intervals, intercepts, symmetry, and asymptotic behavior, where appropriate. (F-BF.3) Identify each characteristic in set notation or as an inequality, where appropriate. (Limited to linear and quadratic functions only.)
28	Identify and graph real-world contexts that can be modeled by a quadratic equation.
29	Solve quadratic equations in standard form by factoring, graphing, tables, and the Quadratic Formula. Know when the Quadratic Formula might yield complex solutions and the location of the solutions in relationship to the x-axis. Know suitable alternatives for the terminology "solution of a quadratic" and when each is appropriate to use.
30	Understand the relationship between the constants of a quadratic equation and the attributes of the graph. Recognize the relationship between the value of the discriminant and the type and number of solutions (i.e., predict the characteristics of a graph given the equation).
Polynomials	
31	Describe and identify a polynomial of degree one, two, three and four by examining a polynomial expression or a graph.

Foundations of Algebra Course

32	Add and subtract polynomials using appropriate strategies (e.g. by using Algebra Tiles).
33	Factor polynomials using the greatest common factor and factor quadratics that have only rational zeros.
34	Justify why some polynomials are prime over the rational number system.
35	Use the zeros of a polynomial to construct a rough graph of the function. (A-APR.3)
\quad Geometry	
36	Explain and apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. (8.G.7)
37	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. (8.G.8)
38	Fluently use formulas and/or appropriate measuring tools to find length and angle measures, perimeter, area, volume, and surface area of polygons, circles, spheres, cones, cylinders, pyramids, and composite or irregular figures. Use them to solve real-world and mathematical problems. (8.G.9)
39	Solve real-world and mathematical problems involving two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. (7.G.6,)
40	Without technology, fluently calculate the measures of central tendency (mean, median, mode), measures of spread (range, interquartile range), and understand the impact of extreme values (outliers) on each of these values. (6.SP.5, 8.SP.1, S-ID.3) Justify which measure is appropriate to use when describing a data set or a real-world context.
41	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. (8.SP.1)
42	Know when it is and is not appropriate to use a linear model to make predictions about a data set beyond a given set of values. Explain extrapolation and interpolation and the impact both have on predicted values.
43	For scatter plots that suggest a linear association, informally fit a straight line and predict the equation for the line of best fit. (8.SP.2)
44	Justify the relationship between the correlation coefficient and the rate of change for the line of best fit.
45	Understand the difference between correlation and causation and identify real-world contexts that depict each of them. (S-ID.9)

Foundations of Algebra Course

Additional Resource

2016 Mississippi College- and Career-Standards Scaffolding Document

The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and CareerReadiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Glossary

Glossary

Note: \quad The words that are defined here pertain to courses derived from the Mississippi College-and Career-Readiness Standards for Mathematics.

- Absolute value. The distance a number is from zero. Distance is expressed as a positive value.
- Addend. A number that is added to another.
- Addition and subtraction within 5, 10, 20, 100, or 1000. Addition or subtraction of two whole numbers with whole number answers, and with sum or minuend in the range $0-5$, $0-10,0-20$, or $0-100$, respectively. Example: $8+2=10$ is an addition within $10,14-5=$ 9 is a subtraction within 20 , and $55-18=37$ is a subtraction within 100.
- Additive inverses. Two numbers whose sum is 0 are additive inverses of one another. Example: $3 / 4$ and $-3 / 4$ are additive inverses of one another because $3 / 4+(-3 / 4)=(-$ $3 / 4)+3 / 4=0$.
- Algebra. The part of mathematics in which patterns and properties of numbers are generalized using variables in expressions, equations, and formulas.
- Associative property of addition. See Table 3 in this Glossary.
- Associative property of multiplication. See Table 3 in this Glossary.
- Bivariate data. Pairs of linked numerical observations. Example: a list of heights and weights for each player on a football team.
- Box plot. (Also called a box-and-whisker plot) A method of visually displaying a distribution of data values by using the median, quartiles, and extremes of the data set. A box shows the middle 50% of the data. ${ }^{1}$
- Coefficient. The multiplicative factor of a term.
- Commutative property. See Table 3 in this Glossary.
- Complex fraction. A fraction A / B where A and/or B are fractions (B nonzero).
- Computation algorithm. A set of predefined steps applicable to a class of problems that gives the correct result in every case when the steps are carried out correctly. See also: computation strategy.

Glossary (continued)

- Computation strategy. Purposeful manipulations that may be chosen for specific problems, may not have a fixed order, and may be aimed at converting one problem into another. See also: computation algorithm.
- Congruent. Two plane or solid figures are congruent if one can be obtained from the other by rigid motion (a sequence of rotations, reflections, and translations).
- Constant. Any well-defined real number in an expression or equation that has a fixed value. For example, in the equation $x+5=9,5$ and 9 are both constants.
- Counting on. A strategy for finding the number of objects in a group without having to count every member of the group. For example, if a stack of books is known to have 8 books and 3 more books are added to the top, it is not necessary to count the stack all over again. One can find the total by counting on-pointing to the top book and saying "eight," following this with "nine, ten, eleven. There are eleven books now."
- Difference. The result of removing a quantity from a set. The difference describes how much one quantity differs from another quantity. For example, in the equation $10-2=8$, 8 is the difference.
- Dilation. A transformation that moves each point along the ray through the point emanating from a fixed center, and multiplies distances from the center by a common scale factor.
- Dividend. The quantity to be divided.
- Divisor. The quantity by which another quantity, the dividend, is to be divided.
- Dot plot. See: line plot.
- Expanded form. A multi-digit number is expressed in expanded form when it is written as a sum of single-digit multiples of powers of ten. For example, $643=600+40+$ 3.
- Expected value. For a random variable, the weighted average of its possible values, with weights given by their respective probabilities.
- First quartile. For a data set with median M, the first quartile is the median of the data values less than M. Example: For the data set $\{1,3,6,7,10,12,14,15,22,120\}$, the first quartile is $6 .^{2}$ See also: median, third quartile, interquartile range.

Glossary (continued)

- Fraction. A number expressible in the form a / b where a is a whole number and b is a positive whole number. (The word fraction in these standards always refers to a nonnegative number.) See also: rational number.
- Identity property of $\mathbf{0}$. See Table 3 in this Glossary.
- Independently combined probability models. Two probability models are said to be combined independently if the probability of each ordered pair in the combined model equals the product of the original probabilities of the two individual outcomes in the ordered pair.
- Integer. A number expressible in the form a or $-a$ for some whole number a.
- Interquartile Range. A measure of variation in a set of numerical data, the interquartile range is the distance between the first and third quartiles of the data set. Example: For the data set $\{1,3,6,7,10,12,14,15,22,120\}$, the interquartile range is $15-6=9$. See also: first quartile, third quartile.
- Line plot. A method of visually displaying a distribution of data values where each data value is shown as a dot or mark above a number line. Also known as a dot plot. ${ }^{3}$
- Mean. A measure of center in a set of numerical data, computed by adding the values in a list and then dividing by the number of values in the list. ${ }^{4}$ Example: For the data set $\{1,3,6,7,10,12,14,15,22,120\}$, the mean is 21 .
- Measures of Center. A measure of central tendency is a value that attempts to describe a set of data by identifying the central position of the data set (as representative of a "typical" value in the set). The measures of central tendency are called the mean, median, and mode.
- Measures of Variability. A measure that describes how spread out or scattered a set of data is. It is also known as measures of dispersion or measures of spread. Some measures of variation are called the range, interquartile range, and standard deviation.
- Median. A measure of center in a set of numerical data. The median of a list of values is the value appearing at the center of a sorted version of the list-or the mean of the two central values, if the list contains an even number of values. Example: For the data set $\{2,3,6,7,10,12,14,15,22,90\}$, the median is 11 .
- Midline. In the graph of a trigonometric function, the horizontal line halfway between its maximum and minimum values.

Glossary (continued)

- Minuend. A quantity from which another is to be subtracted. For example, in the equation $10-2=8,10$ is the minuend.
- Mode. The number which appears most often in a set of data.
- Multiplication and division within 100. Multiplication or division of two whole numbers with whole number answers, and with product or dividend in the range 0-100. Example: $72 \div 8=9$.
- Multiplicative inverses. Two numbers whose product is 1 are multiplicative inverses of one another. Example: $3 / 4$ and $4 / 3$ are multiplicative inverses of one another because $3 / 4 \times 4 / 3=4 / 3 \times 3 / 4=1$.
- Number line diagram. A diagram of the number line used to represent numbers and support reasoning about them. In a number line diagram for measurement quantities, the interval from 0 to 1 on the diagram represents the unit of measure for the quantity.
- Percent rate of change. A rate of change expressed as a percent. Example: if a population grows from 50 to 55 in a year, it grows by $5 / 50=10 \%$ per year.
- Polygon. A plane, closed two-dimensional figure formed by segments that do not cross. Some examples include: triangles, rectangles, and pentagons.
- Probability. A number between 0 and 1 used to quantify likelihood for processes that have uncertain outcomes (such as tossing a coin, selecting a person at random from a group of people, tossing a ball at a target, or testing for a medical condition).
- Probability distribution. The set of possible values of a random variable with a probability assigned to each.
- Probability model. A probability model is used to assign probabilities to outcomes of a chance process by examining the nature of the process. The set of all outcomes is called the sample space, and their probabilities sum to 1 . See also: uniform probability model.
- Product. The result when two or more numbers are multiplied together.
- Properties of equality. See Table 4 in this Glossary.
- Properties of inequality. See Table 5 in this Glossary.
- Properties of operations. See Table 3 in this Glossary.

Glossary (continued)

- Quadrilateral. A polygon formed by four lines segments.
- Qualitative data. Qualitative data is information that describes something, usually characteristics or categories relating to, measuring, or measured by the quality of something rather than its quantity.
- Quantitative data. Quantitative data is data expressing a certain quantity, amount, or range. Usually, there are measurements of units relating to, measuring, or measured by the quantity of something rather than its quality.
- Quantity. How much there is of something.
- Quotient. The result of division. Division is the determination of how many groups can be formed or how many are in each group.
- Random variable. An assignment of a numerical value to each outcome in a sample space.
- Rational expression. A quotient of two polynomials with a non-zero denominator.
- Rational number. A number expressible in the form a / b or $-a / b$ for some fraction a/b. The rational numbers include the integers.
- Rectangle. A quadrilateral and/or parallelogram where every angle is a right angle.
- Rectilinear figure. A polygon all angles of which are right angles.
- Regular Polygon. A polygon is "regular" only when all angles are equal and all sides are equal. Otherwise, it is an irregular polygon.
- Reflection. A rigid transformation in which the resulting figure (image) is the mirror image of the original figure (pre-image). A transformation where each point in a shape appears at an equal distance on the opposite side of a given the line of reflection.
- Repeating decimal. The decimal form of a rational number. See also: terminating decimal.
- Rhombus. A quadrilateral and/or equilateral parallelogram; a plane twodimensional figure with opposite sides parallel and opposite angles parallel. Plural rhombi or rhombuses.

Glossary (continued)

- Rigid motion. A transformation of points in space consisting of a sequence of one or more translations, reflections, and/or rotations. Rigid motions are here assumed to preserve distances and angle measures.
- Rotation. A rigid transformation where a figure is turned about a given, fixed point.
- Sample space. In a probability model for a random process, a list of the individual outcomes that are to be considered.
- Scatter plot. A graph in the coordinate plane representing a set of bivariate data. For example, the heights and weights of a group of people could be displayed on a scatter plot. ${ }^{5}$
- Similarity transformation. A rigid motion followed by a dilation.
- Square. An equilateral, equiangular parallelogram; a plane two-dimensional, four-sided regular polygon with all sides equal and all internal angles equal to right angles.
- Subtrahend. A quantity to be subtracted from another. For example, in the equation 10 $-2=8,2$ is the subtrahend.
- Sum. The result of addition. Addition means to add to a set or combine sets.
- Tape diagram. A drawing that looks like a segment of tape, used to illustrate number relationships. Also known as a strip diagram, bar model, fraction strip, or length model.
- Term. Either a single number or variable, or numbers and variables multiplied together. Terms are separated by + or - signs. For example, in the equation $\quad 4 x-7=5,4 x, 7$, and 5 are all terms.
- Terminating decimal. A decimal is called terminating if its repeating digit is 0 .
- Third quartile. For a data set with median M, the third quartile is the median of the data values greater than M. Example: For the data set $\{2,3,6,7,10,12,14$, $15,22,120\}$, the third quartile is 15 . See also: median, first quartile, interquartile range.
- Translation. A rigid transformation that moves every point in a figure a constant distance in a specified direction.

Glossary (continued)

- Transitivity principle for indirect measurement. If the length of object A is greater than the length of object B, and the length of object B is greater than the length of object C, then the length of object A is greater than the length of object C. This principle applies to measurement of other quantities as well.
- Trapezoid. A quadrilateral with at least one set of parallel sides.
- Uniform probability model. A probability model which assigns equal probability to all outcomes. See also: probability model.
- Variable. A letter or other symbol used in an expression to represent an unspecified number; it may have many values, one value, or no possible value depending on its use. In a polynomial, the variables correspond to the base symbols themselves stripped of coefficients and any powers or products.
- Vector. A quantity with magnitude and direction in the plane or in space, defined by an ordered pair or triple of real numbers.
- Visual fraction model. A tape diagram, number line diagram, or area model.
- Whole numbers. The numbers $0,1,2,3 \ldots$

[^5]

MISSISSIPPI DEPARTMENT OF EDUCATION

Ensuring a bright future for every child

Tables

Tables 1-5
Table 1. Common addition and subtraction situations. ${ }^{6}$

'These take apart situations can be used to show all the decompositions of a given number. The associated equations, which have the total on the left of the equal sign, help children understand that the $=$ sign does not always mean makes or results in but always does mean is the same number as.
${ }^{2}$ Either addend can be unknown, so there are three variations of these problem situations. Both Addends Unknown is a productive extension of this basic situation, especially for small numbers less than or equal to 10 .
${ }^{3}$ For the Bigger Unknown or Smaller Unknown situations, one version directs the correct operation (the version using more for the bigger unknown and using less for the smaller unknown). The other versions are more difficult.

[^6]TaELE 2. Common multiplication and division situations.?

	Unknown Product	Group Size Unknown ("How many in each group?" Division)	Number of Groups Unknown ("How many groups?" Division)
	$3 \times 6=$?	$3 \times ?=18$, and $18 \div 3=$?	$? \times 6=18$, and $18 \div 6=$?
	There are 3 bags with 6 plums in each bag. How many plums are there in all?	If 18 plums are shared equally into 3 bags, then how many plums will be in each bag?	If 18 plums are to be packed 6 to a bag, then how many bags are needed?
Equal Groups	Measurement example. You need 3 lengths of string, each 6 inches long. How much string will you need altogether?	Measurement example. You have 18 inches of string, which you will cut into 3 equal pieces. How long will each piece of string be?	Measurement example. You have 18 inches of string. which you will cut into pieces that are 6 inches long. How many pieces of string will you have?
Arrays, ${ }^{4}$ Area ${ }^{5}$	There are 3 rows of apples with 6 apples in each row. How many apples are there?	If 18 apples are arranged into 3 equal rows, how many apples will be in each row?	If 18 apples are arranged into equal rows of 6 apples, how many rows will there be?
	Area example. What is the area of a 3 cm by 6 cm rectangle?	Area example. A rectangle has area 18 square centimeters. If one side is 3 cm long, how long is a side next to it?	Area example. A rectangle has area 18 square centimeters. If one side is 6 cm long, how long is a side next to it?
	A blue hat costs \$6. A red hat costs 3 times as much as the blue hat. How much does the red hat cost?	A red hat costs $\$ 18$ and that is 3 times as much as a blue hat costs. How much does a blue hat cost?	A red hat costs $\$ 18$ and a blue hat costs $\$ 6$. How many times as much does the red hat cost as the blue hat?
Compare	Measurement example. A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?	Measurement example. A rubber band is stretched to be 18 cm long and that is 3 times as long as it was at first. How long was the rubber band at first?	Measurement example. A rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first?
General	$a \times b=$?	$a \times ?=p$, and $p \div a=$?	$? \times b=p$ and $p \div b=$?

${ }^{4}$ The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and columns: The apples in the grocery window are in 3 rows and 6 columns. How many apples are in there? Both forms are valuable.
${ }^{5}$ Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps, so array problems include these especially important measurement situations.

[^7]TAELE 3. The properties of operations. Here $2, b$ and c stand for arbitrary numbers in a given number system. The properties of operations apply to the rational number system, the real number system, and the complex number system.

Associative property of addition	$(a+b)+c=a+(b+c)$
Commutative property of addition	$a+b=b+a$
Additive identity property of 0	$a+0=0+a=a$
Existence of additive inverses	For every a there exists $-a$ so that $a+(-a)=(-a)+a=0$.
Associative property of multiplication	$(a \times b) \times c=a \times(b \times c)$
Commutative property of multiplication	$a \times b=b \times a$
Multiplicative identity property of 1	$a \times 1=1 \times a=a$
Existence of multiplicative inverses	For every $a \neq 0$ there exists $1 / a$ so that $a \times 1 / a=1 / a \times a=1$.
Distributive property of multiplication over addition	$a \times(b+c)=a \times b+a \times c$

TAELE 4. The properties of equality. Here a, b and c stand for arbitrary numbers in the rational, real, or complex number systems.

Reflexive property of equality	$a=a$
Symmetric property of equality	If $a=b$, then $b=a$.
Transitive property of equality	If $a=b$ and $b=c$, then $a=c$
Addition property of equality	If $a=b$, then $a+c=b+c$.
Subtraction property of equality	If $a=b$, then $a-c=b-c$
Multiplication property of equality	If $a=b$, then $a \times c=b \times c$.
Division property of equality	If $a=b$ and $c \neq 0$, then $a \div c=b \div c$.
Substitution property of equality	If $a=b$, then b may be substituted for a in any expression containing a.

TaELE 5. The properties of inequality. Here a, b and c stand for arbitrary numbers in the rational or real number systems.

```
Exactly one of the following is true: }a<b,a=b,a>b
        If }a>b\mathrm{ and }b>c\mathrm{ then }a>c
            If }a>b\mathrm{ , then }b<a\mathrm{ .
            If }a>b\mathrm{ , then -a<-b.
            If }a>b\mathrm{ , then }a\pmc>b\pmc
    If }a>b\mathrm{ and }c>0\mathrm{ , then }a\timesc>b\times
    If }a>b\mathrm{ and }c<0\mathrm{ , then }a\timesc<b\timesc
    If }a>b\mathrm{ and }c>0\mathrm{ , then }a\divc>b\div
    If }a>b\mathrm{ and c<0, then }a\divc<b\divc
```


[^0]: * Modeling Standards

[^1]: * Modeling Standards

[^2]: The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations-Fractions (Grades 3-5); Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 6-7); the Number System, Expressions \& Equations, Geometry, Statistics \& Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics \& Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically.

[^3]: * Modeling Standards

[^4]: * Modeling Standards

[^5]: ${ }^{1}$ Adapted from Wisconsin Department of Public Instruction, http://dpi.wi.gov/standards/mathglos.htmI, accessed March 2, 2010.
 ${ }^{2}$ Many different methods for computing quartiles are in use. The method defined here is sometimes called the Moore and McCabe method. See Langford, E., "Quartiles in Elementary Statistics," Journal of Statistics Education Volume 14, Number 3 (2006).
 ${ }^{3}$ Adapted from Wisconsin Department of Public Instruction, op. cit.
 ${ }^{4}$ To be more precise, this defines the arithmetic mean.
 ${ }^{5}$ Adapted from Wisconsin Department of Public Instruction, op. cit.

[^6]: ${ }^{6}$ Adapted from Box 2-4 of Mathematics Learning in Early Childhood, National Research Council (2009, pp.32, 33).

[^7]: 7 The first examples in each cell are examples of discrete things. These are easier for students and should be given before the measurement examples.

