Section 1.2 \& 1.3: Segments

Line segments that have the same length are called \qquad .

You can say "the length of \qquad is equal to the length of \qquad " or you can say " \qquad is congruent to \qquad ". The symbol \qquad means "is congruent to".

Draw two segments that are congruent to each other using a ruler.

Plot $J(-3,4), K(2,4), L(1,3)$, and $M(1,-2)$ in a coordinate plane. Then determine whether $\overline{J K}$ and $L M$ are congruent.

Segment Addition Postulate: \qquad

EXAMPLE 3 Using the Segment Addition Postulate

a. Find $D F$.

b. Find GH.

MATHEMATICAL CONNECTIONS Point S is between
points R and T on $\overline{R T}$. Use the information to write an equation in terms of x. Then solve the equation and find $R S, S T$, and $R T$.
a. $R S=2 x+10$
$S T=x-4$
$R T=21$

EXAMPLE 4 Using the Segment Addition Postulate

The cities shown on the map lie approximately in a straight line. Find the distance from Tulsa, Oklahoma, to St. Louis, Missouri.

Midpoint and Segment Bisectors:
Midpoint: \qquad

Segment Bisector: \qquad
1.

2.

Point M is the midpoint of $\overline{V W}$. Find the length of $\overline{V M}$.

Midpoint formula:
a. The endpoints of $\overline{R S}$ are $R(1,-3)$ and $S(4,2)$. Find the coordinates of the midpoint M.
b. The midpoint of $\overline{J K}$ is $M(2,1)$. One endpoint is $J(1,4)$. Find the coordinates of endpoint K.

Distance Formula:

EXAMPLE 4 Using the Distance Formula

Your school is 4 miles east and 1 mile south of your apartment. A recycling center, where your class is going on a field trip, is 2 miles east and 3 miles north of your apartment. Estimate the distance between the recycling center and your school.

